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The first two stages in modelling times series are hypothesis testing and estimation. For long memory time

series, the second stage was studied in the paper published in [M. Boutahar et al., Estimation methods of
the Iong memory parameter: monte Carlo analysis and application, J. Appl. Statist. 34(3), pp. 261-301.]

in which we have presented some estimation methods of the long memory parameter. The present paper
is intended for the first stage, and hence completes the former, by exploring some tests for detecting long
memory in time series. We consider two kinds of tests: the non-parametric class and the semi-parametric

one. We precise the limiting distribution of the non-parametric tests under the null of short memory and we
show that they are consistent against the alternative of long memory. We perform also some Monte Carlo
simulations to analyse the size distortion and the power of all proposed tests. We conclude that for large
sample size, the two classes are equivalent but for small sample size the non-parametric class is better than
the semi-parametric one.
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1. Introduction

The last two decades of statistical research has resulted in a vast array of important contributions in
the area of long memory modelling, from both a theoretical and an empirical perspective. Interested
readers for this concept are referred to the books of Beran [3], Deniau et al. [12], Doukhan
et al. [14] and Robinson [39]. This statistical tool has been applied in many areas: In hydrology
[25,27], finance [33,34,52], macroeconomic [22], geophysics [4,20], telecommunication [44],
demography [17] and in psychology [47].
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The first step in statistical modelling is hypothesis testing. One can naturally ask the following
questions:

e Whether the studied series has really a long memory?
e Which statistical test one can use to decide the presence of such persistence?

The second step in statistical modelling is the estimation. In this step, the same problem arises:
Which estimation method can be used ? This problem was studied in many papers in which the
authors compare several estimation methods (see [6,43] among others).

In this paper, we propose the use of some new test statistics and try, by a Monte Carlo study, to
shed light on the tests which are always used in empirical works. For instance, we will point out
that the popular tests based on the Geweke and Porter-Hudak’s [16] and Robinson’s [38] statistics
suffer from a size distortion for small sample size.

This paper is organized as follows. In Section 2, we recall some definitions of the long memory
concept. In Section 3, we present some tests and propose the use of some new non-parametric
tests. We establish the limiting distribution of the non-parametric tests under the null of short
memory and show that they are consistent against the alternative of long memory. In Section
4, we perform a Monte Carlo study to compare all the tests introduced in Section 3. Section 5
concludes.

2. Definitions of long memory

Let (y;) be a covariance stationary process with covariance function y (k) and spectral density
f (). The following are five common definitions of long memory:

K lask — oo, (1)

e There exist d € (0, 1/2) and a constant ¢; > 0 such that: y (k) ~ ¢
where a; ~ by means that a; /b, — 1 as k — oo.

e There exist d € (0, 1/2) and a constant ¢; > 0 such that: f(A) ~ c2|A| 2 asr — 0, (2)

(see [3]).
e The covariance of (y,) is not absolutely summable, i.e.: Z ly (k)| = +o0, (3)
keZ
(see [42]).

o The spectral density of (y,) can be written as: f(1) = |A|"2L(JA|™1),0 <d < 1/2, (4)

where L is a slowly varying function (i.e. for alla > 0, L(at)/L(t) — 1if t — +00), bounded
on every finite interval, (see [9]).

oo
e The process (y,) has the linear and causal representation: y, = Z Yiu_j, 5)
j=0

where ; ~ sj%las j—o00, 86>0 0<d<1/2, (uj) ~1i.i.d.(0, o?) such that E(u‘}) =
04(3 + k) < oo, for some constant k > 0, (see [26]).
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The process (y;) is called a short memory process if

> Iy < +oo.

keZ

There is no evident link between the five definitions of long memory. Under some assumptions,
(1) and (2) are equivalent with c¢; = (¢;/7)T'(2d) sin(1/2 — d)7, where T is the gamma function
(see [42]). The definition (4) is a relaxed version of (2). The definition (3) is the weaker one, since
(3) can be obtained from (1) or (2) or (4). Two long memory processes are frequently evoked:

e The fractional Gaussian noise (FGN), i.e. the stationary Gaussian process with mean 0 and
covariance

2
V&)=%%M+H““—HM”“+M—1W“L (6)

The FGN is self-similar with the parameter H = d + 1/2, further properties of the FGN are dis-
cussed in Mandelbrot and Taqqu [35], it has been used in various domains: geophysical data [4,20],
communication [32,34], see also the references therein. It satisfies (1) with ¢; = 62d(2d + 1)
(see [3, p. 52]).

o The Autoregressive Fractionality Integrated Moving Average (ARFIMA), (p, d, q) process

(L)1 = L)y, = 0(Lyuy,

where ¢ (L) =1—-¢ L —---—¢,L7, O(L)=14+60,L +---+6,L d eR is the memory
parameter, L the backward shift operator Ly, = y;_1, u, a white noise with mean 0 and variance
o2, (1 — L)? the fractional difference operator defined by the binomial series

o0

1-L) = Z.F(j—_d)Lj.
j:OF(‘] + DI'(=d)

The spectral density of the ARFIMA process is given by
o? . .
FO) = 510N Plgp )| H1 — e
2

and hence satisfies (2) with c; = (62/27)|6(1)|?|¢ (1)| 2. It can also be shown that the ARFIMA
process satisfies (5) with y; ~ (10(1)[|¢(1)|~1/T'(d))j¢ ! as j — oo (see [26, p. 272]).

This class of processes was introduced by Granger and Joyeux [21] and Hosking [24] to extend
the Autoregressive Integrated Moving Average (ARIMA) modelling of Box and Jenkins [8]. It
has been used in macroeconomic [24] and [22], demography [17], psychology [47] and many
other applications.

3. Short or long memory?

To test if a given time series has short memory there are several tests, which can be gathered into
two classes: The non-parametric class of tests and the semi-parametric one. Before presenting such
tests, we will precise the null and the alternative hypotheses of interest. For the null hypothesis,
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we focus on the following class of short memory processes:

Hy: The process (y;) is given by

Vi = ijutfjs Z [b;] < oo, (7)

JEZ JEZ

where (u;) ~ 1.i.d.(0, o) such that E(u‘;) = 043+ k) < o0, for some constant ¥ > 0.
The alternative hypothesis is the following class of long memory processes:

H;: The process (y,) satisfies (5).

Our results remain true if we assume that the process (y,) satisfies under the null the following
Functional Central Limit Theorem (FCLT):

1 [nt]
- T = B(1), 8)
Gy/n kX:I:

is any consistent estimator of the long run variance cryz which is defined as

1 n
2 .
oS = lim var | — Y )
Y n—00 (ﬁ; )

[x] is the integer part of x, X,, = X denotes the weak convergence of a sequence of random
elements X,, in D to arandom element X in D, and D = D[0, 1] is the space of random functions
that are right-continuous and have left limits, endowed with the Skorohod topology, B(7) is a
Brownian motion.

The assumption (8) is weaker than (7) since there are many processes, not necessary linear, that
satisfy the FCLT (8), with af instead of 8y2 (see [18,23] among others). The main difficulty is to
construct 2 for such nonlinear processes. However, for linear processes (7), the long run variance
(9) isequalto ), , v (k) = 27 f(0), where y is the covariance functionand f the spectral density
of y;, and the convergence (8) holds with 6)? = 27 £(0) and £(0) is any consistent estimator of
f(0) (see [11]). Moreover, it is easy to build a consistent estimator of the spectral density for the
class (7) of linear processes, in opposite of nonlinear processes for which the spectral theory is
not developed enough.

If the null hypothesis of short memory is rejected then there are many sources to explain this
rejection such as the nonlinearity or/and the non-stationarity. If the time series is linear,! and the
non-stationary tests fail to reject the stationarity, then one can consider the alternative hypothesis
of long memory. Such alternative can be corroborated by looking at the graph of the autocorrelation
function (slow decay) and plotting the periodogram (high peak at the zero frequency) of the time
series under study.

We do not assume the normality of the time series neither under Hp, nor under H;. Such
assumption is strong and usually supposed in this context (see [31,33]).

where &5

3.1 Non-parametric tests

Consider the time series y,,r = 1, ..., n, to be tested. To define the non-parametric test statistics
let 67 be a consistent estimator of the long run variance o2 = 1lim,, . var((1//n) Y_;_; y) and

k n
_ _ 1
Sk=) (i =3, In= - Doy (10)
j=1 j=1
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We consider the following six test statistics:

o The modified Hurst statistic (Hurst [27])

mR/S = (n), where R(n) = max Sy — min S. (11)
Oy O<k<n O<k<n

o The Kolmogorov statistic (Kulperger and Lockhart [29])

1
K, = — max |S;|. (12)

oy l<k<n

o The Anderson-Darling statistic (Anderson and Darling [2])

AD,(g) = 222( )Sk, (13)

where g is a weight function continuous on (0, 1).
o The Cramér-von Mises statistic (Anderson and Darling [2]). If g(x) = 1 for all x in (13), then
the Anderson-Darling statistic is reduced to the one of Crameér-von Mises:

1
CWM, = — ZZSk (14)
Ty k=1

e The Linear statistic (Kulperger and Lockhart [29])

2

n‘kl

L) = ) s, (15)

where £ is a weight function continuous on (0, 1).
e The Quadratic statistic

Qn(ga h) =

Zg <n+1) (Zh(—)sk)z : (16)

where g and & are two weight functions continuous on (0, 1), suchthath < g, i.e. h(x) < g(x)
forany x € (0, 1).

}

Note that all the test statistics (11)—(16) are functional of &, and Si. Consequently, we need
to define a consistent estimator &3 of ayz. For linear processes we have crf = 27 f(0) and hence
it is sufficient to estimate f(0). Many consistent estimators are available in the literature. For
example, one can consider the smoothed periodogram (see [7]). In this paper, we will use the
following spectral estimator:

N 1 k .
fO=5-> w (m) Pk, q<n, (17)

lkl=q

where w(.) is a spectral window, i.e. a continuous function on [0, 1] with w(0) = 1 and |w(x)| < 1
forall x, w(x) = 0forall x ¢ [0, 1], g is the truncation parameter, and

n— |kl

== > Ok = 30 = 3
n t=1

Choice of the truncation parameter q. For the class of processes (7), the consistency of fO
holds under the assumption: (1/g) + (¢/n) — 0 as n — oco. However, to obtain the same order
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for the bias and variance, we should make the following choice:

g = [Cnl/(z‘”l)], (18)
where § is the largest exponent for which (see [1, p. 533])
1—
17wl _ g < oo (19)
x—0 |x|5

For example § = 1 for the Bartlett window w(x) = 1 — |x|, § = 2 for the Parzen window w(x) =
1 — x%. The mean square error (MSE) E(f(0) — f(0))? is of order n=2%/@+1)_Hence the Parzen
window is to be preferred than the Bartlett window. The choice of the constant C in (18) can be
achieved by performing a data driven window (see Section 4).

If 8y2 =2r f (0), where f (0) is the spectral estimator (17), then the following two classical
statistics can be obtained as a particular case of the m R/ S statistic:

e If g = 0thenmR/S is reduced to the well known R/S statistic introduced by Hurst [27].
o If w(x) =1— |x|, the Bartlett window, then mR/S is reduced to the statistic proposed by
Lo [33].

We shall denote it by m1R/S. Lo [33] proved the consistency of the test based on the statistic
m1R/S against the alternative of Gaussian long memory processes. We will show that this result
remains true without assuming the normality assumption.

The statistics K,,, AD,(g) and L, (h), with 63 = y(0)/2m, have been used by Kulperger and
Lockhart [29] to test independence in time series. In this paper we suggest the use of them to test
the presence of long memory by using a more general estimator 85 of the long run variance o2

We do this because y (0)/27 is a non-consistent estimator of oy? unless the underlying process is a

v

white noise. Taking 8y2 = f (0)/2m, where f (0) is given by (17) with ¢ # 0, we obtain versions
of K,,, AD,(g) and L, (h) which are robust to weak dependence.

The Kwiatkowski, Phillips, Schmidt and Shin (KPSS) statistic, proposed by Kwiatkowski
et al. [30] to test stationarity of time series against the alternative of unit root, can be obtained as
a particular case of the Cramer-von Mises statistic CVM,, if we choose the Bartlett window in
(17). Lee and Schmidt [31] have proposed the use of the KPSS statistic to test the presence
of long memory and shown its consistency against the alternative of Gaussian ARFIMA (0, d, 0)
process. We will show that the KPSS test is still consistent against the large class of long memory
processes (5).

If g(x) = h(x) = 1 for all x in (16) and we consider the spectral estimator (17) by using the
Bartlett window, then the quadratic statistic O, (g, &) is reduced to the one proposed by Giraitis
et al. [19], and denoted by V/S.

3.1.1 Limiting distribution of non-parametric tests under the null of short memory

PROPOSITION 1  Under the null Hy, let f 0) be any arbitrary consistent estimator of f (0) and
consider the statistics (11)—(16) with 8; = 27 f(0), then the following convergences hold

mR/S .
NG — V= 05511121 By(t) — 0151221 By(1), (20)
K, ¢
5 Ko = sup |Bo(1)], (21)
ﬁ ‘ Osrlg)l ’

1
AD,(g) -5 AD(g) = fo (g(t) Bo(1))? dt, (22)
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1
L,(h) =5 L(h) = / h(t)Bo(1) dt, 23)
0

1 1
0.(3.h) = Q(g. h) = /0 (g(t)Bo(1))*dt — ( /0 h(t)Bo(t) dt)?, (24)

where i) denotes the convergence in distribution and By(t) = B(t) — tB(1) is a Brownian
bridge.

Proof See Appendix. u

The random variable L (k) is Gaussian with zero mean and variance o2 = fol fol h(t)h(s)(min
(t,s) — ts)dr ds. The random variable AD(g) has the same probability density as Z;’;l Aj Z?,
where (Z;) ~1.i.d.N(0, 1) and A; are the eigenvalues of the following integral equation: ‘

1
A/o 8(s)g(@)(min(z, s) —ts) f(s)ds = f(1);

there are two choices frequently used for the function g:

e g(t) = 1, in this case, »; = 1/7%j? and the limiting distribution is known as the Cramer-von
Mises distribution.

e g(t) ={t(rt — 1)}7'/2, in this case Aj=1/(j(j+1)) and the limiting distribution is the
Anderson-Darling distribution.

The cumulative probability distributions of AD(g), with g(t) = 1 and g(t) = {t(t — 1)}7'/2,
and those of V, Ko, Q(1, 1) have a known analytic expressions (see Appendix).

3.1.2  Consistency of non-parametric tests against the alternative of long memory

To establish the consistency for the non-parametric tests, we limit ourselves to the spectral
estimator (17) with the Bartlett window as a particular choice for w(.).

PROPOSITION 2 Under the hypothesis Hy, consider the non-parametric tests (11)-(16) where
62=6%q) =7(0)+2 Y911 =j/(q + )P (), and assume that g — 0o as n— oo and

1
g—>0 if —<d< =
n
1
408" o i d=- (25)
n
P
7z — 0 if 0<d < —,
n
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then we have

2
(qafl—(cll))Zd L 2. 5). (26)
1 1R/S
<q+ ) m\/z/ N Vd+1/2—OSUP Wd+1/2(t)— lnf Wai172(t), @27)
(2 ke pmmin
0<r<l1
qg+1
( ) AD,(g) > AD(g. d) = / () W1 202 dr. 29)
1 1
(“ ) Lo(h) 5> L(h.d) = fo h(t) W1 2(0) dt, (30)

q+1 Zd ﬁ 1 2 1
(T) 0n(g. 1) -5 0(g, h, d) = /0 (0 W12 (1)) dt — ( /0 h(r)WdH/z(r)dr) ,

31)
where
) 028%12(d)
Cc°(d,d) = , ,
2d + 1DHT'2d + 1) sin((d — 1/2)7)
Was1/2(t) = Bas1y2(t) — t Bys1/2(1) is the fractional Brownian bridge.
Proof see Appendix. |

Remark It is not easy to verify the condition (25), since in practice the degree of integration
d is unknown. However, there are many choices for ¢ independent of d and satisfying (25), for
example g ~ Cin¥ with 0 < y < 1/2 and for some strictly positive constant Cj.

Recall that the Lo [33] statistic is givenby m1R/S = R(n)/6,(q). By assuming that the process
(y;) is Gaussian satisfying

y(k) ~ k¥ 'Lk) ask — oo (32)
and by using the fact that in this case the following convergence holds
1 [nt]
Zyk = Byy1,2(1), (33)

d+1/2 172
n L(n) P

Lo [33] has shown that
mlR/S »
«/ﬁ —> 400
which implies that the test based on the statistic m1R/S//n is consistent.
By assuming that (y,) is an ARFIMA(0, d, 0) process, i.e. (1 — L)? y, = u, where u, is a
Gaussian white noise, Lee and Schmidt [31] have shown that

2d 1
(‘;’) KPSS —%, /0 (W1 j2(1))? dt, (34)

where the KPSS is given by (14) with 6y2 = 27 £(0) and f(0) is computed from (17) with the
Bartlett window (w(x) = 1 — |x|). This implies that the test based on the KPSS statistic is consis-
tent against the alternative of fractionally integrated processes. However, to obtain the convergence
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(34) the normality assumption is not needed (see the proof of proposition 2 in the Appendix).
Indeed if we assume that (y,) belongs to the class (5) then (34) follows from the Functional
Non-Central Limit Theorem (FNCLT)

1 [nt]

pyESy;) Zyk = C(d, 8)Bat1/2(1). (35)
k=1

The convergence (31) was established by Giraitis et al. [19] for the particular case g(x) =
h(x) = 1 forall x, by assuming that the process is stationary satisfying (1) and (35), and imposing
a condition on the cumulants of order 4 (see condition (3.7), p. 272). Unfortunately, such condition
is very difficult to check and is not necessary to obtain the convergence (31), (see the proof of
Proposition 2 in the Appendix).

Here we obtain a more general results than those of Lo [33] and Lee and Schmidt [31], since
Proposition 2 implies that the tests based on the statistics m1R/S//n, K,//n, AD,(g), L, (h)
and Q,(g, h) are consistent against the alternative H; of long memory.

3.2 Semi-parametric tests

The semi-parametric tests are based on semi-parametric estimators of the long memory parameter.
When such estimators are used, the spectral density of the underlying process is always assumed
to have the following form:

FO) = 11— ), (36)
where f* is a bounded spectral density. Then a test of long memory can be formulated as follows:
Hg: d=0
against
Hy:d #0.

To perform such a semi-parametric test, let d be an asymptotically normal estimator of d:

d—d
0,(d)

£, N, 1), (37)

for a given sequence anz (d) > 0.

The null hypothesis Hy: d = 0 is rejected at the significance level « if \d| [0,(d) > ui_qj2,
where u1_y7 is the 1 — /2 percentile of N (0, 1).

In this paper we will be interested to the following three semi-parametric estimators.

The Geweke and Porter-Hudak estimator: 1t is given by

. YR — R loglL,(A )] — 1 X
dopyt = == ————, R=—>"R, (38)
(R —R) my =

where
2

1

’

n
it
D e
t=1

is the periodogram of (y;), A ; are the Fourier frequencies and R; = — log{4 sin? (A i/2)}. Geweke
and Porter-Hudak [16] showed that dgpy is asymptotically normal for d < 0 (i.e. the memory
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of the process is antipersistent) and the truncation parameter m, is such that 1/m, + m,/n —
0 as n — oo, for example m, =n”,0 <y < 1. The sequence in Equation (37) is anz(d) =
7?/16 37 (R — R)1.

Hurvich et al. [28] extended the Geweke and Porter-Hudak s result to the general case |d| < 1/2.
Moreover, based on the behaviour of MSE, they recommended m,, = O(n*/®) as an optimal choice
for the truncation parameter.

The modified Geweke and Porter-Hudak estimator: To reduce the bias of the estimator c?GpH,
Robinson [37] proposed to discard the first / low frequencies

1 my,

" (R; — R)log{I, (X _
Zj—lJrlfn”] ) g_{z( j)}’ R = Z Rj, O§l<mn- (39)
Zj=1+1(Rj —R) mn =1 j=l+1

dRm =

Under the normality of (y,) and some regularity conditions, he showed the asymptotic normality
of dg,m with o2(d) = m%/24m,,. Velasco [49] has extended Robinson’s [37] results to linear but
non-Gaussian processes.

The Robinson estimator: The spectral density of (y,) is assumed to have the form (36) with
—1/2 < d < 1/2, then the Robinson estimator of d is given by

dosp = argmin R(d), (40)
de®

where ® = [A}, Az], Ay and A; are chosen arbitrary between —1/2 and 1/2 such that —1/2 <
Ay < Ay < 1/2,and

A 1 “ A 1 S 2d
R(d) =1og G(d) —de—nzllogkj, G(d) = m—n;)\j L(A)).
J= J=

Robinson [38] proved the asymptotic normality of desp by assuming that (y,) is Gaussian, and
the following condition for the truncation parameter m,,:

! 28+1
— 4z

n

(logm,)? — 0 if n — oo, (41)

n
where 8 depends on the regularity of the spectral density of (y,) through the relation:
F) ~Gr ¥ 1 +00P) ifr— 0+, 0<d<1/2,0<p <2

The convergence (37) holds with 0.2(d) = 1/4m,.

4. Monte Carlo simulations

We use the S-PLUS 6.0 software to carry out the Monte Carlo experiments. We study the size and
the power of the eleven following tests:
The non-parametric tests based on the following statistics:

e R/S: the statistic (11) with 6% = p(0) = 1/n Y, (y: — )%

e mlR/S: the statistic (11) with &yz =2 f (0) and f (0) is computed from (17) with the
Bartlett window (w(x) = 1 — |x]|), and the truncation parameter ¢ is data-dependent given
by Equation (43) below.

e m2R/S : the statistic (11) with &3 =27 £(0) and £(0) is computed from (17) with the
Parzen window (w(x) = 1 — x?) and the truncation parameter g is data-dependent given by
Equation (44) below.
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For the following other non-parametric tests we use 6y2 =2r f (0), and f (0) is computed from
(17) with the Parzen window (w(x) = 1 — x?) and the truncation parameter ¢ is data-dependent
given by Equation (44) below.

K, : the Kolmogorov statistic (12).

CVM = AD, (1): the Cramer-von Mises statistic i.e. the statistic (13) with g(¢) = 1.
AD, = AD,(g): the Anderson-Darling statistic (13) with g(r) = {r(r — 1)}~/2.

L, = L,(1): the linear statistic (15) with h(¢) = 1.

0, = 0,(1, 1): the quadratic statistic with g(t) = h(t) = 1.

The semi-parametric tests based on the following statistics:

e GPH = dgpii/o,(d): the Geweke-Porter-Hudak statistic, dgpy is given by (38) and

712
ol(d) = — —|.
627" (R; — R)?

e GPHT = c?Rm /o, (d): the truncated Geweke—Porter-Hudak statistic, dARm is given by (39) and
o?(d) = % /24m,,.
e R =dasp /0,,(d): the Robinson statistic, dosp is given by (40) and o2(d) = 1/4m,,.

4.1 Choice of the truncation parameters

All the non-parametric (resp.semi-parametric) tests, except R/S, depend on the truncation param-
eter ¢ (resp. m,). The optimal choice for ¢ remains an open problem. For m,,, we use the adaptive
procedure proposed by Hurvich and Deo [28] when we compute the statistic GPH. However, for
the statistic R, no optimal choice is known in the literature and this problem is not yet resolved.

Non-parametric tests: A good estimator for f(0) will give a test with a correct size. However,
if we use the spectral estimator (17), this one depends on the truncation parameter ¢. If we limit
ourselves to the class (7) of linear processes, a choice which makes a trade-off between the bias
and the variance is given by (18), the constant C can be computed by minimizing the mean square
error, MSE, of the estimator f (0). Indeed, from Anderson [1]:

MSE = £(f(0) — SO ~n /@ {ac+ ),

2
! 1
A= 2102(0)/_1 wi(x)dx, B=K* (E > |r|5y(r)> ,

reZ

the constant K is given by (19). By minimizing the MSE with respect to C we get Cop =

(28A/B)"/#+D and hence
o5 A \1/@+D
[y

A and B depend on the spectral density of the process (y,). For example, if (y,) is an AR(1):

Vi =ayi—1 + s, (42)
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then an optimal choice for g should be

7.58> \"*
q = (Wn> (for the Bartlett window), (43)
—a
6a2  \"°
g = (mn> (for the Parzen window), (44)
—a

where a is the least squares estimator of the parameter a in the model (42). However, such
choices are not optimal since the dynamic of the time series is unknown and usually different from
Equation (42). Nevertheless, for all non-parametric tests, except the m 1 R /S test, we use the Parzen
window, i.e. 6; =52(q) =p0)+2 Z?zl(l — (j/(qg + D¥)P(j), where g is data-dependent
via the formula (44).

Semi-parametric tests: For the GPH statistic we use the data-driven truncation parameter
suggested by Hurvich and Deo [28]

27 .,
m”‘[(lzsnzK ”> ’

where K is the least squares estimator of the third parameter in regressing log{/,(1;)} on
(1, log |2 sin(2;/2)], x§/2).

To compute the Robinson statistic R we take m, = [n1/2], with this choice the condition (41)
holds if the process (y,) is assumed to be an ARFIMA.

4.2  Size

The R/S, m1R/S, m2R/S, K,,, CVM, AD,, and Q,, are one side tests, i.e. the null is rejected if
the p-value is lesser than « at a significance level «. The other tests are two sides, i.e. the null is
rejected if the p-value is lesser than «/2 at a significance level «. To study the size of the tests,
we consider two data generating processes (DGP):

e The AR(1):
vi=¢y—1 +u, () ~iid. N(O, 1).
e The ARMA(1,1):

Vi —¢yi—1 = uy — Ou;—q,  (u;) ~iid.N(0,1) with¢ =0.5,6 = —3.

For the AR(1), the parameter ¢ takes two values, ¢ = 0.5 (the process is weakly dependent),
and ¢ = 0.9 (the process is in the neighbourhood of the unit root, and hence nearly non-stationary).
We carry out an experiment of 1000 replications, and we use three different sample sizes, n =
100, n = 500 and n = 1000.

The Analysis of the Simulation Results for an AR(1)

From Table 1, we observe that the size distortions are reasonable for the non-parametric tests
except the R/S test. For the R/S test the distortion is severe, this was also pointed out by Lo
[33] and Giraitis et al. [19]. For example, if n = 500 and « = 5%, then we obtain an empirical
size equal to 66.7%, Lo (1991) reported the value 55.9% and Giraitis et al. [19] reported the
value 66.58%. The size distortions of m2R /S (the modified R/S test with Parzen window) are a
bit greater than m1R/S (the modified R/S with Bartlett window). For example if n = 500 and
a = 5%, then the empirical size of m1R/S is 2.8% whereas the empirical size of m2R/S is 2%.
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Table 1. Empirical test sizes (in %).

Sample size n n = 100 n = 500 n = 1000
Test Level o 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 26.3 468 59.7 437 667 597 499 709 799
mlR/S 0 0.3 1.4 0.4 2.8 7.4 0.7 4.3 8.2
m2R/S 0 0.2 1 0.3 2 5.6 0.7 3.8 7.3
K, 0.1 0.7 2.3 0.4 1.9 3.7 0.2 2 5.2
CVM 0 6.2 129 0.7 5 10.1 1.1 48 10.7
AD, 0.8 39 108 0.3 3.6 9.5 0.7 33 105
Ly 0 6.8 13.5 0.8 52 113 1.1 53 108
On 0.6 2.8 9.3 0.7 3.8 9.8 1.4 5.1 9.8
GPH 184 332 431 248 359 438 24 35.7 458
GPHT 604 713 756 42 543 624 386 514 594
R 1.7 29.1 368 6.4 145 237 49 121 17.8

Note: The table contains rejection frequencies of the null hypothesis of short memory using the 11 tests. Rejection
frequencies are based on 1000 replications generated from the DGP: y; = 0.5y;_1 + u;, u; ~ i.i.d.N (0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

The K, test is more conservative, i.e. the empirical size is always lesser that the nominal one.
The empirical sizes of CVM, AD,,, L,, and Q,, are much closer to their nominal values. The size
distortions are large for all semi-parametric tests. The size distortions of GPHT are greater than
GPH, for example if n = 1000 and o« = 10%, then the empirical size of GPHT is 59.4% whereas
the empirical size of GPH is 45.8%. The R test has also a size distortion which decreases as the
sample size n increases.

Remark Form1R/S (the modified R/S with Bartlett window), the averages of ¢ over the 1000
replications take values around 3,4 and 5 if the sample size n is equal to 100,500 and 1000,
respectively. For the other test we use the Parzen window and the averages of ¢ over the 1000
replications take values around 14,25 and 31 if the sample size n is equal to 100,500 and 1000,
respectively.

To save space in the rest of the paper we present only the results of the following six tests®:

e The two non-parametric R/S and m2R/S tests. The Lo [33] test m1R/S has similar properties
asm2R/S, and then is discarded.

e The two non-parametric L, and Q, tests. The first is a linear functional of the partial sums Sy
given by Equation (10), the second is quadratic. The results of the K, test are worse and hence
are removed. The CVM, AD, (g) and Q,, statistics are functional of S,f, hence we suppress the
results of CVM and AD, (g) which are similar to those obtained for the Q, test.

e The two semi-parametric GPH and R tests. The GPHT test gives a worse results than GPH,
and hence is removed.

From Table 2, we observe that if the parameter ¢ = 0.9 (the process is near a unit root process
which is non-stationary), then all the tests suffer from a large size distortion. For instance, among
the 1000 replications, no one is retained as a short memory by the GPH test! The size distortions
of the non-parametric tests, except the R/S test, are clearly lesser than the semi-parametric
ones. For example, if n = 500 and o« = 5%, then the empirical sizes of m2R/S, L, and Q, are,
respectively, 16%, 17% and 27.6% whereas the sizes of GPH and R are 100% and 84.5%. By
increasing the sample size the tests are not improved. These results are not surprising since the
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Table 2. Empirical test sizes (in %).

Sample size n n =100 n = 500 n = 1000
Test Level o 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 954 983 99.1 99.8 100 100 100 100 100
m2R/S 0 0 0.9 3.8 16 27.6 7.2 207  31.2
L, 05 237 351 6.3 17 24 5.1 149 25
Oy 0.3 15 35 1.7 276 414 11.2 26,6 385
GPH 100 100 100 100 100 100 100 100 100
R 858 913 94 73.7 845  89.1 55 72 79.9

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: y, = 0.9y,_1 + u;, u; ~ 1.i.d.N (0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

limiting distributions established in the proposition 1 under the null of short memory no longer
hold if ¢ = 1.

The analysis of the simulation results for an ARMA(1,1).

By comparing Tables 1 and 3 (i.e. by adding a moving average component to the AR(1) process)
we observe the following: the size distortion of the R/S increases, for example if n = 500 and
a = 5%, then the empirical size in the AR(1) is 66.7% and increases to 81.7% in the ARMA(1,1).
The size distortionof m2R /S, L, and Q,, are almost the same for the two DGPs. The size distortion
of GPH increases, for example if n = 500 and o« = 5%, then the empirical size of GPH in the
AR(1) is 35.9% and increases to 100% in the ARMA(1,1). The size distortions of R are almost
the same for the two DGPs, for example if n = 500 and o = 5%, then the empirical size of R in
the AR(1) is 14.5% and decreases to 13.9% in the ARMA(1,1).

We can point out that in the class of the semi-parametric tests, the GPH test is less robust to
short memory than the R test.

4.3 Power

To study the power of all tests, we generate two long memory processes. The first one is an
ARFIMA generated by using the function arima.fracdiff.sim in SPLUS 6.0. The second is a FGN
by using Beran’s [4] code.

The analysis of the simulation results for an ARFIMA(0,d,0).

Table 3. Empirical test sizes (in %).

Sample size n n =100 n =500 n = 1000

Test Level o 1% 5%  10% 1% 5% 10% 1% 5% 10%
R/S 388 599 718 61.2 81.7 88.7 65.5 83.9 91.8
m2R/S 0 0.6 1.7 0.6 4.1 7.9 0.3 4 8.5
L, 1.2 6.3 12.7 1.4 6.1 12.3 1 5.4 10.2
On 0.3 56 123 1.5 6.8 13.3 0.9 5.8 11.6
GPH 946 985 992 100 100 100 100 100 100

R 154 285 37 6.5 13.9 20.7 43 10.4 17.6

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: y, = 0.5y,—1 + u; + 3u;—1, u, ~ iid. N(0, 1)
where the nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.
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The DGP is the ARFIMA(0,d,0):
(1 - L)y, =u;, where(u,) ~iid.N(0,1), (45)

we consider three values ford,d = 0.1,d = 0.3 and d = 0.4.

From Tables 4-6, we observe that for a given sample size n, the power of the tests are improved
considerably as we increase the degree of integration d. For example, whenn = 500 and & = 5%,
the empirical power of m2R/S for d equals to 0.1, 0.3 and 0.4 are 24.2%,52.1% and 72.4%,
respectively.

We observe also that for d fixed, the rejection frequencies of the null increase with the sample
size n. For example, if d = 0.3 (Table 5) and « = 10%, then the empirical power of m2R/S is
10.6% if n = 100. Increasing n to 500 and to 1000 observations, the empirical power becomes
respectively 63.5% and 79.9%. The empirical power of R is 55.1% if n = 100, increases to 81.1%
if n = 500 and then increases to 90.6% if n = 1000.

The analysis of the simulation results for FGN

The DGP is the FGN given by (6) withd = 0.4 and o> = 1.

From Tables 5 and 7, we note that the rejection frequencies of Hy for FGN with d = 0.4 are
greater than those obtained for the ARFIMA (0, 0.3, 0). For example if n = 500 and « = 5%, then
the empirical power of m2R/S is 52.1% if the DGP is an ARFIMA (0, 0.3, 0) and increases to
67.4% if the DGP is a FGN. This can be explained by the behaviour of the spectral densities of the
two processes in the neighbourhood of 0. The spectral density of a FGN is equivalent to c1|A| =2,
the one of ARFIMA behaves also like c;|A|~?¢. Consequently the memory of a FGN with d = 0.4

Table 4. Empirical test powers (in %).

Sample size n n =100 n = 500 n = 1000

Test Level o 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 34 111 182 21 384 50.8 259 445  56.7
m2R/S 0.6 3.7 9.5 9.1 242 354 142 284 39

Ly 23 10 15.9 57 179  26.6 76 173 247
Oy 1.6  10.6 18.6 107 27 39.9 12.7 26,5 388
GPH 28 123 204 202 416 547 415 643 731
R 157 282 364 102 226 33 10.7 229 325

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1 — LYy, = u,, u; ~iid. N0, 1) where the
nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

Table 5. Empirical test powers (in %).

Sample size n n =100 n = 500 n = 1000
Test Level 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 422 615 703 919 971 984 985 995 997
m2R/S 0.4 3.9 106 272 521 63.5 532 72 79.9
L, 6.8 228 325 242 369 467 296 443 524
Oy 34 188 345 35 586 699 557 714  80.2
GPH 25.1 481 589 804 927 957 948 987 994
R 33.1 479 551 554 742 811 728 86.6  90.6

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1 — LYy, = u,, u; ~iid. N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.
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Table 6. Empirical test powers (in %).

Sample size n n =100 n =500 n = 1000
Test Level o 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 644 808 8.6 989 998 998 100 100 100
m2R/S 06 102 225 55.9 724 821 73.4 87 91.5
L, 13 30.1 40.1 364 512 596 443 559 629
On 103 336 499 607 788 8.8 746 872 915
GPH 742 882 922 100 100 100 100 100 100
R 478 635 709 819 914 933 914 973 981

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1 — L)%y, = u;, u; ~ iid. N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

Table 7. Empirical test powers (in %).

Sample size n n =100 n =500 n = 1000
Test Level o 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 711 85 89.1 986 999 999 997  99.9 100
m2R/S 0.1 7 174 465 674 766 731 873 918
Ly 146 304 403 315 461 541 429 573 62
0Oy 6.7 313 462 54 727 812 738 866 918
GPH 88.7 951 976 100 100 100 100 100 100
R 496 642 708 791 885 918 924 963  97.8

Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP which is the FGN given by (6) with d = 0.4 and
o2 = 1 where the nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

is greater than the one of an ARFIMA (0, 0.3, 0) [in the sense that the spectral density of the FGN
goes, as . — 0, to infinity faster than the one of the ARFIMA(0, 0.3, 0)]. The ARFIMA(0, 0.4,
0) and the FGN with d = 0.4 have the same memory, and the rejection frequencies of Hy for the
two processes are remarkably similar: Compare Tables 6 and 7.

4.4 Nominal size-empirical size curves

The size distortion of tests can easily be identified by plotting the curve (x;, I:“o (Xi))1<i<m, where
1N

Fo(xi) = h (Y (46)
j=1

where p; is the p-value of the test corresponding to the significance level x; obtained in the jth
simulation, and the DGP satisfies the null hypothesis Hy.
For the nominal sizes we choose the grid

x; = 0.001, 0.002, ...,0.01;0.015,...,0.3 (m = 68). (47)

We generate an AR(1) with ¢ = 0.6, and an ARMA(1,1) with ¢ = 0.4 and § = —3. For each
DGP we perform N = 5000 replications. We use two sample sizes n = 100 and n = 500.
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Figure 1 shows that, if the process is weakly dependent, then the R/S test has always a positive
bias, whereas the one of the m2R /S test is always negative. The tests L,, and Q, have a negative
bias for small nominal sizes, which becomes positive when the nominal size increases. The
semi-parametric GPH and R tests have a positive bias. As the sample size increases (Figure 2),
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Figure 2. The size distortions.
Note: The DGP is the AR(1): y;
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= 0.6y;—1 + u;, the sample size is n = 500.
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the size distortion of R/S increases, the bias of m2R /S remains negative but decreases, the bias
of L, and Q, decrease and become positive for almost significance level x;, the size distortion
of GPH increases, finally the bias of R is still positive but decreases.

Figures 3 and 4, compared with Figures 1 and 2, show that the behaviour of the non-parametric
R/S,m2R/S and Q, tests for ARMA(1,1) process is fairly similar to the one obtained for AR(1)
process. The size distortion of L, increases. The curves of GPH and R are reversed.

4.5 Size-power curves

The comparison of tests can easily be performed by plotting the size-power curves, i.e. the empir-
ical size is plotted in the horizontal axis and the empirical power is plotted in the vertical axis.
Such method was suggested by Davidson and MacKinnon [10] to adjust the power to the correct
size. The most useful test is the one having the nearest curve to the shape I', joining the points
(0,0),(0,1) and (1,1). For each test we plot the curve (Fo(x), Fi(x;)), where Fy(x;) is given by
Equation (46),

x; = 0.001, 0.002, ...,0.01; 0.015, ..., 0.985; 0.990, 0, 0991, ...,0.999 (m = 215), (48)

and
1 N
Fw) =+ le{m,»},
j:

where p; is the p-value of the test corresponding to the significance level x; obtained in the jth
simulation, and the DGP satisfies the alternative hypothesis H;.

We carry out four experiments.

Experiment I: To compute the empirical size and the empirical power, we generate an AR(1)
with ¢ = 0.6, and an ARFIMA(0,0.3,0), respectively.

09 T — m2R/S ]

Empirical size

45° line

0.35

Nominal size

Figure 3. The size distortions.
Note: The DGP is the ARMA(1,1): y, = 0.4y,_1 + 3u;—1 + u;, the sample size is n = 100.
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Recall that the most useful test is the one having the nearest curve to the shape I', joining the
points (0,0),(0,1) and (1,1). Figure 5 shows that the m2R/S and Q, tests are more useful than
the others. The curve of GPH is over the other curves for large empirical size, this should be
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Figure 5. Size-power curves.
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Note: The DGP under Hy is the AR(1): y; = 0.6y,—1 + u;, the DGP under H; is the ARFIMA(0,0.3,0):
1- L)0'3y, = u;, the sample size is n = 100.
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Figure 6. Size-power curves.
Note: The DGP under Hy is the AR(1): y; = 0.6y,_1 + u,, the DGP under H; is the ARFIMA(0,0.3,0):
(1= L)%y, = u,, the sample size is n = 500.

interpreted with a care. Indeed, the GPH test does not perform better than the other since its curve
is far from the point (0,0). This worse property can be explained as follows: we observe from
Figure 1 and 2 that the curve of GPH is always over the 45° line with a high values, which means
that the test over-rejects the null. Moreover, it is well known that tests who over-reject the null
have always a high power. Note that the empirical size is greater than 16.44% and the empirical
power is greater than 56.34% for all significance level x; > 0.001. The R/S test has the same
problem as GPH.

As the sample size n increases, Figure 6, the m2R/S and Q, tests remain preferable with a
slight superiority of m2R/S. The curve of R becomes closer to the ones of m2R /S and Q,,, which
means that the performance of the R test becomes equivalent to m2R/S and Q,. However, the
R test suffers from a small size distortion: the observed rejection frequencies exceed 1.88% for
every significance level x; > 0.001.

Experiment 2: The DGP under Hy is an ARMA(1,1) with ¢ = 0.4 and 6 = —3, and the DGP
under H; is an ARFIMA(0,0.3,0).

Figures 7 and 8 provide similar results to those observed in Figures 5 and 6 when AR(1) process
is used as a DGP under Hj.

Experiment 3: The DGP under Hy is an ARMA(1,1) with ¢ = 0.4 and & = —3, and the DGP
under H; is a FGN with d = 0.4.

If the DGP under H; is a FGN, then the results are different from those obtained when the
DGP is an ARFIMA. Figures 9 and 10 show that the R/S, GPH and R tests suffer from a
size distortion since their curves are far from the point (0, 0). The performances of m2R/S
and Q, are reversed comparing to the case when the DGP is an ARFIMA (Figures 7 and 8):
the Q, test becomes preferable to m2R/S. As the sample size n increases, Figure 10, the
spread between m2R/S and Q, decreases. Only the curves of m2R/S, L, and Q, approach
the shape I'.
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Figure 7. Size-power curves.
Note: The DGP under Hy is the ARMA(1,1): y; = 0.4y;_1 + 3u;—1 + us, the DGP under Hj is the
ARFIMA(0,0.3,0): (1 — L)%3y, = u,, the sample size is n = 100.
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Figure 8. Size-power curves.
Note: The DGP under Hy is the ARMA(1,1): y; = 0.4y,_1 + 3u;—1 + us, the DGP under H; is the
ARFIMA(0, 0.3, 0): (1 — L)%3y, = u;, the sample size is n = 500.
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Figure 9. Size-power curves.
Note: The DGP under Hy is the ARMA(L,1): y; = 0.4y,_1 + 3u;—1 + u,, the DGP under Hj is the FGN
with d = 0.4, the sample size is n = 100.
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Figure 10. Size-power curves.
Note: The DGP under Hy is the ARMA(1,1): y; = 0.4y,_1 + 3u;—1 + u,, the DGP under Hj is the FGN
with d = 0.4, the sample size is n = 500.

Experiment 4. The DGP under Hy is an ARMA(1,1) with ¢ = 0.4 and 8 = —3, and the DGP
under H; is the square of an ARFIMA(0,0.3,0):
V= X—’ZZ —1, 1 =L)X, =u,, where (u,) ~iid.N(O,1). (49)
E(X7)
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Figure 11. Size-Power curves.
Note: The DGP under Hy is the ARMA(1,1): y; = 0.4y,_1 + 3u;—1 + u;, the DGP under H is the square
of the ARFIMA given by Equation (49), the sample size is n = 100.

The process (y;) is nonlinear, and hence does not satisfy the alternative hypothesis H;. However
it has long memory. Indeed, if (X,) is an ARFIMA(0, d;, 0) then the autocovariance func-
tion of (y,) is such that y (k) ~ ¢1k??%=D as k — oo, and hence satisfies the definition (1),
(see Taqqu [41]).

If the DGP under H; is a nonlinear process, the results are also different from those obtained in
the two precedent experiments. Figure 11 shows that R/S is a biased test (i.e. the empirical size is
greater than the power). The curves of GPH and R are far from (0,0) which implies that the tests
suffer from a size distortion. The curve of L, is near the 45° line and then the test is conservative
(i.e. the size and the power are low). The m2R/S and Q, tests are equivalent and better than
the other tests. As the sample size n increases, Figure 12, the R/S test becomes non-biased but
has, like the GPH test, a size distortion. The test L, remains always conservative. Finally, the
spreads between m2R /S, Q, and R decrease, and hence the performance of R approaches those
of m2R/S and Q,,.

5. Conclusion

We have presented and compared some tests to detect long memory in time series. Based on a
limited Monte Carlo experiments, some remarks can be drawn from this study:

e The R/S test has worse properties. This is a well-known result, the test over-rejects the null,
see Lo [33].

e The m2R/S test is more useful.

e The K, and L, tests, which are functional of the partial sums Sy given by Equation (10), are
conservative with a low power. Consequently they are less useful.
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Figure 12. Size-Power curves.
Note: The DGP under Hy is the ARMA(1,1): y; = 0.4y;—1 + 3us—1 + u;, the DGP under Hj is the square
of the ARFIMA given by Equation (49), the sample size is n = 500.

e The AD, (g) and Q, (g, h) tests, which are quadratic functional of the partial sums Sy, have a
good performance even for small sample size. Such tests are also more useful in goodness-of-fit
testing (see [2]).

e The semi-parametric tests have worse properties for small sample size. The GPH and GPHT
tests have a size distortion greater than the one of R. The latter has the same performance as
the non-parametric tests m2R /S and Q, (g, h) for large sample size.

As a conclusion we suggest the use of the non-parametric mR /S, AD, (g) and Q, (g, h) tests if
the sample size is small. This is the case for low frequency data (annual, quarterly and monthly).
For example macroeconomic samples are often small.

If the sample size is large, as in the case for financial data, then the semi-parametric R test can
also be used to detect the presence of long memory. Finally, the R/S,GPH and GPHT tests must
be used with a care.
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Notes

1. Such hypothesis can be tested by using the nonlinearity tests (see [45,46]).

2. Such hypothesis can be tested by using the KPSS test of Kwiatkowski et al. [30], the ADF test of Dickey and Fuller
[13] and the PP test of Phillips and Perron [36].

3. Results of the other tests are available upon request.
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Appendix
A.1  Proof of proposition 1

The convergences (20)-(24) can easily be deduced from the fact that all the statistics can be written
as continuous functional of the term in the left-hand side of (8), and by using the continuous
mapping theorem: that is for all (X,), X € D[0, 1], if X,, = X then g(X,) = g(X) for all
continuous function g. For example let us prove the convergence (20). Let

R(n) 1 il maxo<k<n S[nt] - 1TlinO<k<n S[nt]
Oh=——m—, X,()=—F—— Vi, Ya(t)= .
J2anf0) .E%ﬁmg;k J2nm f(0)
We have

mR/S _ /T
Vi £0)

where g :D[0, 1] — DI0, 1] is given by
vt e (0,1), g (r)= sup (x(t) —tx(1)) — Oi<r11£ (x(1) —1x(1)),

O<r<t

Qm Yn(t) = g(Xn(t)) and Qn = Yn(l)v

x = (x(t),1 € (0, 1)) € D[O, 1].
The convergence (8) implies that ¥,, = g(B), consequently

0, = Y,(1) = g(B)(1) = sup Bo(r) — inf Bo(1) = V.

0<r<1

Finally, since +/f(0)/ £(0) converges in probability toward 1, the weak convergence of
mR/S/\/n to V follows immediately.
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A.2 The cumulative distribution functions of the random variables V, Ky, AD(g)
and Q(1,1):

The random variable V measures the extent of the Brownian bridge, hence its cumulative
distribution function is given by (see [15]):
+00
Fy)= Y (1—4x%kPe .
k=—o00
The random variable K has a Kolmogorov distribution (see [5, p. 85]),
+00
Fo() = 142 (~Dfe s,
k=1
The cumulative distribution function of the random variable AD(1) is a somewhat complicated
(see [2, p. 202])

1 Erk+1/2 . (4k + 1)?
F — /4k 1 —(4k+1) /IGXK ,
D) = Zk:0 K tle VA " 16
K14 is the Bessel function:
+o0
b4 X\ n+2k 1
K = (I —1 . L(x) = = S —
) = 5 00) = O b zQQ) Fo T

The cumulative distribution function of the random variable AD(g), with g (r) = {¢(t — 1)} /2,
is given by (see [2, p. 204])

1 (— l)kF(k +1/2) oy b /)= (kD) Br) dr
Fapgg) (x) = Z 4+1 / € r32(1 — )l
The random varlable Q(l, 1) has the following cumulative distribution function (see [50])
= 2212
Foan() =1+2) (=Dfe ™k
k=1

A.3  Proof of Proposition 2

The convergence (26) can be deduced from Theorem 3 of Hosking [26]. Let || X ||, = {E(|X [Py 1/p
denotes the Euclidian norm of the random vector X € L?(€2). From Theorem 3 of Hosking [26],
we have for all k

C%nz(z‘j’l) if l

N logn 1
19 k) —y©)llz ~ { 3 j ifd = (Al)
c%n’1 if0 <d < —,

for some positive constants c1, ¢; and c¢3. Let anz(q) =y0)+2 Z‘Jl.zl(l —j/g+D)y() =

1/(q + 1) var(39_; y;). Since var(3_9_, y;) ~ q%*1C%(d, §), then for n large enough we have

al(q) ~ q*C%(d, §). Moreover

' 5t(q) H B ot (q)
(g + 1) (@+D%  (g+D*|,  [(@+D*

The second term in the right—hand side of Equation (A2) converges to zero as ¢ — 0o, hence the

convergence (26) holds if the first term in the right-hand side of Equation (A2) converges also to

62(q) ol(q)

—C%d, )

—C%d,8)|. (A2
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zero as ¢ — oo. We have that

_ | si@ at(9)

L(n,q,d):= H PRSI — @07,
- oy +23 0=~ -y
TroE |7 =R G

1
< (g + D' max |7 (k) — y k)
=k=q

From Equation (A1) it follows that

1-2d
qg+1 1 1
f-<d<-=
Cl< " ) 1 4 < < 2
1/2

Lin,d,q) < { ¢ (w) ifd =1

n 4
g+ 1'% . 1
CST if0 <d < Z

By using Equation (25), we deduce that L(n,d,q) — 0 asn — oo, forall 0 < d < 1/2. The
convergences (27)-(31) can be proved by using Equation (26), similar arguments as above and
by noting that under H; the following convergence holds

1 [nt]
a2 = C(d.8)Bunp(0).
k=1
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