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The first two stages in modelling times series are hypothesis testing and estimation. For long memory time
series, the second stage was studied in the paper published in [M. Boutahar et al., Estimation methods of
the long memory parameter: monte Carlo analysis and application, J. Appl. Statist. 34(3), pp. 261–301.]
in which we have presented some estimation methods of the long memory parameter. The present paper
is intended for the first stage, and hence completes the former, by exploring some tests for detecting long
memory in time series. We consider two kinds of tests: the non-parametric class and the semi-parametric
one.We precise the limiting distribution of the non-parametric tests under the null of short memory and we
show that they are consistent against the alternative of long memory. We perform also some Monte Carlo
simulations to analyse the size distortion and the power of all proposed tests. We conclude that for large
sample size, the two classes are equivalent but for small sample size the non-parametric class is better than
the semi-parametric one.
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1. Introduction

The last two decades of statistical research has resulted in a vast array of important contributions in
the area of longmemorymodelling, fromboth a theoretical and an empirical perspective. Interested
readers for this concept are referred to the books of Beran [3], Deniau et al. [12], Doukhan
et al. [14] and Robinson [39]. This statistical tool has been applied in many areas: In hydrology
[25,27], finance [33,34,52], macroeconomic [22], geophysics [4,20], telecommunication [44],
demography [17] and in psychology [47].
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The first step in statistical modelling is hypothesis testing. One can naturally ask the following

questions:

• Whether the studied series has really a long memory?
• Which statistical test one can use to decide the presence of such persistence?

The second step in statistical modelling is the estimation. In this step, the same problem arises:
Which estimation method can be used ? This problem was studied in many papers in which the
authors compare several estimation methods (see [6,43] among others).
In this paper, we propose the use of some new test statistics and try, by a Monte Carlo study, to

shed light on the tests which are always used in empirical works. For instance, we will point out
that the popular tests based on the Geweke and Porter-Hudak’s [16] and Robinson’s [38] statistics
suffer from a size distortion for small sample size.
This paper is organized as follows. In Section 2, we recall some definitions of the long memory

concept. In Section 3, we present some tests and propose the use of some new non-parametric
tests. We establish the limiting distribution of the non-parametric tests under the null of short
memory and show that they are consistent against the alternative of long memory. In Section
4, we perform a Monte Carlo study to compare all the tests introduced in Section 3. Section 5
concludes.

2. Definitions of long memory

Let (yt ) be a covariance stationary process with covariance function γ (k) and spectral density
f (λ). The following are five common definitions of long memory:

• There exist d ∈ (0, 1/2) and a constant c1 > 0 such that: γ (k) ∼ c1k2d−1 as k → ∞, (1)

where ak ∼ bk means that ak/bk → 1 as k → ∞.

• There exist d ∈ (0, 1/2) and a constant c2 > 0 such that: f (λ) ∼ c2|λ|−2d as λ → 0, (2)

(see [3]).
• The covariance of (yt ) is not absolutely summable, i.e.:

∑

k∈Z

|γ (k)| = +∞, (3)

(see [42]).

• The spectral density of (yt ) can be written as: f (λ) = |λ|−2dL(|λ|−1), 0 < d < 1/2, (4)

where L is a slowly varying function (i.e. for all a > 0, L(at)/L(t) → 1 if t → +∞), bounded
on every finite interval, (see [9]).

• The process (yt ) has the linear and causal representation: yt =
∞

∑

j=0
ψjut−j , (5)

where ψj ∼ δj d−1 as j → ∞, δ > 0, 0 < d < 1/2, (uj ) ∼ i.i.d.(0, σ 2) such that E(u4j ) =
σ 4(3+ κ) < ∞, for some constant κ ≥ 0, (see [26]).
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The process (yt ) is called a short memory process if

∑

k∈Z

|γ (k)| < +∞.

There is no evident link between the five definitions of long memory. Under some assumptions,
(1) and (2) are equivalent with c2 = (c1/π)Ŵ(2d) sin(1/2− d)π , where Ŵ is the gamma function
(see [42]). The definition (4) is a relaxed version of (2). The definition (3) is the weaker one, since
(3) can be obtained from (1) or (2) or (4). Two long memory processes are frequently evoked:

• The fractional Gaussian noise (FGN), i.e. the stationary Gaussian process with mean 0 and
covariance

γ (k) = σ 2

2 {|k + 1|2d+1 − 2|k|2d+1 + |k − 1|2d+1}. (6)

The FGN is self-similar with the parameter H = d + 1/2, further properties of the FGN are dis-
cussed inMandelbrot andTaqqu [35], it has been used in various domains: geophysical data [4,20],
communication [32,34], see also the references therein. It satisfies (1) with c1 = σ 2d(2d + 1)
(see [3, p. 52]).

• The Autoregressive Fractionality Integrated Moving Average (ARFIMA), (p, d, q) process

φ(L)(1− L)dyt = θ(L)ut ,

where φ(L) = 1− φ1L − · · · − φpLp, θ(L) = 1+ θ1L + · · · + θqL
q , d ∈ R is the memory

parameter, L the backward shift operator Lyt = yt−1, ut a white noise with mean 0 and variance
σ 2, (1− L)d the fractional difference operator defined by the binomial series

(1− L)d =
∞

∑

j=0

Ŵ(j − d)

Ŵ(j + 1)Ŵ(−d)
Lj .

The spectral density of the ARFIMA process is given by

f (λ) = σ 2

2π |θeiλ)|2|φ(eiλ)|−2|1− eiλ|−2d

and hence satisfies (2) with c2 = (σ 2/2π)|θ(1)|2|φ(1)|−2. It can also be shown that theARFIMA
process satisfies (5) with ψj ∼ (|θ(1)||φ(1)|−1/Ŵ(d))j d−1 as j → ∞ (see [26, p. 272]).
This class of processes was introduced by Granger and Joyeux [21] and Hosking [24] to extend

the Autoregressive Integrated Moving Average (ARIMA) modelling of Box and Jenkins [8]. It
has been used in macroeconomic [24] and [22], demography [17], psychology [47] and many
other applications.

3. Short or long memory?

To test if a given time series has short memory there are several tests, which can be gathered into
two classes:The non-parametric class of tests and the semi-parametric one. Before presenting such
tests, we will precise the null and the alternative hypotheses of interest. For the null hypothesis,
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we focus on the following class of short memory processes:

H0: The process (yt ) is given by
yt =

∑

j∈Z

bjut−j ,
∑

j∈Z

|bj | < ∞, (7)

where (uj ) ∼ i.i.d.(0, σ 2) such that E(u4j ) = σ 4(3+ κ) < ∞, for some constant κ ≥ 0.
The alternative hypothesis is the following class of long memory processes:

H1: The process (yt ) satisfies (5).
Our results remain true if we assume that the process (yt ) satisfies under the null the following
Functional Central Limit Theorem (FCLT):

1
σ̂y

√
n

[nt]
∑

k=1
yk =⇒ B(t), (8)

where σ̂ 2y is any consistent estimator of the long run variance σ 2y which is defined as

σ 2y = lim
n→∞

var
(

1√
n

n
∑

k=1
yk

)

(9)

[x] is the integer part of x, Xn =⇒ X denotes the weak convergence of a sequence of random
elementsXn inD to a random elementX inD, andD = D[0, 1] is the space of random functions
that are right-continuous and have left limits, endowed with the Skorohod topology, B(t) is a
Brownian motion.
The assumption (8) is weaker than (7) since there are many processes, not necessary linear, that

satisfy the FCLT (8), with σ 2y instead of σ̂ 2y (see [18,23] among others). The main difficulty is to
construct σ̂ 2y for such nonlinear processes. However, for linear processes (7), the long run variance(9) is equal to∑

k∈Z
γ (k) = 2πf (0), where γ is the covariance function and f the spectral density

of yt , and the convergence (8) holds with σ̂ 2y = 2πf̂ (0) and f̂ (0) is any consistent estimator of
f (0) (see [11]). Moreover, it is easy to build a consistent estimator of the spectral density for the
class (7) of linear processes, in opposite of nonlinear processes for which the spectral theory is
not developed enough.
If the null hypothesis of short memory is rejected then there are many sources to explain this

rejection such as the nonlinearity or/and the non-stationarity. If the time series is linear,1 and the
non-stationary tests2 fail to reject the stationarity, then one can consider the alternative hypothesis
of longmemory. Such alternative can be corroborated by looking at the graph of the autocorrelation
function (slow decay) and plotting the periodogram (high peak at the zero frequency) of the time
series under study.
We do not assume the normality of the time series neither under H0, nor under H1. Such

assumption is strong and usually supposed in this context (see [31,33]).

3.1 Non-parametric tests
Consider the time series yt , t = 1, . . . , n, to be tested. To define the non-parametric test statistics
let σ̂ 2y be a consistent estimator of the long run variance σ 2y = limn→∞ var((1/√n)

∑n
k=1 yk) and

Sk =
k

∑

j=1
(yj − ȳn), ȳn = 1

n

n
∑

j=1
yj . (10)
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We consider the following six test statistics:
• The modified Hurst statistic (Hurst [27])

mR/S = R(n)

σ̂y

, where R(n) = max0<k<n
Sk − min0<k<n

Sk. (11)
• The Kolmogorov statistic (Kulperger and Lockhart [29])

Kn = 1
σ̂y

max1<k<n
|Sk|. (12)

• The Anderson–Darling statistic (Anderson and Darling [2])

ADn(g) = 1
n2σ̂ 2y

n
∑

k=1
g2

(

k

n + 1
)

S2k , (13)

where g is a weight function continuous on (0, 1).
• The Cramèr-von Mises statistic (Anderson and Darling [2]). If g(x) = 1 for all x in (13), then
the Anderson–Darling statistic is reduced to the one of Cramèr-von Mises:

CVMn = 1
n2σ̂ 2y

n
∑

k=1
S2k . (14)

• The Linear statistic (Kulperger and Lockhart [29])

Ln(h) = 1
nσ̂y

n
∑

k=1
h

(

k

n + 1
)

Sk, (15)

where h is a weight function continuous on (0, 1).
• The Quadratic statistic

Qn(g, h) = 1
n2σ̂ 2y







n
∑

k=1
g2

(

k

n + 1
)

S2k − 1
n

(

n
∑

k=1
h(

k

n + 1 )Sk

)2




, (16)

where g and h are two weight functions continuous on (0, 1), such that h ≤ g, i.e. h(x) ≤ g(x)

for any x ∈ (0, 1).
Note that all the test statistics (11)–(16) are functional of σ̂y and Sk . Consequently, we need

to define a consistent estimator σ̂ 2y of σ 2y . For linear processes we have σ 2y = 2πf (0) and hence
it is sufficient to estimate f (0). Many consistent estimators are available in the literature. For
example, one can consider the smoothed periodogram (see [7]). In this paper, we will use the
following spectral estimator:

f̂ (0) = 1
2π

∑

|k|≤q

w

(

k

q + 1
)

γ̂ (k), q < n, (17)

wherew(.) is a spectral window, i.e. a continuous function on [0, 1]withw(0) = 1 and |w(x)| ≤ 1
for all x, w(x) = 0 for all x /∈ [0, 1], q is the truncation parameter, and

γ̂ (k) = 1
n

n−|k|
∑

t=1
(yt+k − ȳn)(yt − ȳn).

Choice of the truncation parameter q: For the class of processes (7), the consistency of f̂ (.)

holds under the assumption: (1/q) + (q/n) → 0 as n → ∞. However, to obtain the same order
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for the bias and variance, we should make the following choice:

q =
[

Cn1/(2δ+1)
]

, (18)
where δ is the largest exponent for which (see [1, p. 533])

lim
x→0

1− w(x)

|x|δ = K < ∞. (19)
For example δ = 1 for the Bartlett windoww(x) = 1− |x|, δ = 2 for the Parzen windoww(x) =
1− x2. The mean square error (MSE)E(f̂ (0) − f (0))2 is of order n−2δ/(2δ+1). Hence the Parzen
window is to be preferred than the Bartlett window. The choice of the constant C in (18) can be
achieved by performing a data driven window (see Section 4).
If σ̂ 2y = 2πf̂ (0), where f̂ (0) is the spectral estimator (17), then the following two classical

statistics can be obtained as a particular case of the mR/S statistic:
• If q = 0 then mR/S is reduced to the well known R/S statistic introduced by Hurst [27].
• If w(x) = 1− |x|, the Bartlett window, then mR/S is reduced to the statistic proposed by
Lo [33].

We shall denote it by m1R/S. Lo [33] proved the consistency of the test based on the statistic
m1R/S against the alternative of Gaussian long memory processes. We will show that this result
remains true without assuming the normality assumption.
The statistics Kn, ADn(g) and Ln(h), with σ̂ 2y = γ̂ (0)/2π, have been used by Kulperger and

Lockhart [29] to test independence in time series. In this paper we suggest the use of them to test
the presence of long memory by using a more general estimator σ̂ 2y of the long run variance σ 2y .
We do this because γ̂ (0)/2π is a non-consistent estimator of σ 2y unless the underlying process is a
white noise. Taking σ̂ 2y = f̂ (0)/2π , where f̂ (0) is given by (17) with q 6= 0, we obtain versions
of Kn, ADn(g) and Ln(h) which are robust to weak dependence.
The Kwiatkowski, Phillips, Schmidt and Shin (KPSS) statistic, proposed by Kwiatkowski

et al. [30] to test stationarity of time series against the alternative of unit root, can be obtained as
a particular case of the Cramèr-von Mises statistic CVMn if we choose the Bartlett window in
(17). Lee and Schmidt [31] have proposed the use of the KPSS statistic to test the presence
of long memory and shown its consistency against the alternative of Gaussian ARFIMA(0, d, 0)
process.We will show that the KPSS test is still consistent against the large class of long memory
processes (5).
If g(x) = h(x) = 1 for all x in (16) and we consider the spectral estimator (17) by using the

Bartlett window, then the quadratic statistic Qn(g, h) is reduced to the one proposed by Giraitis
et al. [19], and denoted by V/S.

3.1.1 Limiting distribution of non-parametric tests under the null of short memory
Proposition 1 Under the null H0, let f̂ (0) be any arbitrary consistent estimator of f (0) and
consider the statistics (11)–(16) with σ̂ 2y = 2πf̂ (0), then the following convergences hold

mR/S√
n

L−→ V = sup
0≤t≤1

B0(t) − inf0≤t≤1B0(t), (20)
Kn√

n

L−→ K0 = sup
0≤t≤1

|B0(t)|, (21)

ADn(g)
L−→ AD(g) =

∫ 1

0
(g(t)B0(t))2 dt, (22)
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Ln(h)
L−→ L(h) =

∫ 1

0
h(t)B0(t) dt, (23)

Qn(g, h)
L−→ Q(g, h) =

∫ 1

0
(g(t)B0(t))2 dt − (

∫ 1

0
h(t)B0(t) dt)2, (24)

where L−→ denotes the convergence in distribution and B0(t) = B(t) − tB(1) is a Brownian
bridge.

Proof See Appendix. ¥

The random variable L(h) is Gaussian with zero mean and variance σ 2 =
∫ 1
0

∫ 1
0 h(t)h(s)(min

(t, s) − ts) dt ds. The random variable AD(g) has the same probability density as ∑∞
j=1 λjZ

2
j ,where (Zj ) ∼ i.i.d.N(0, 1) and λj are the eigenvalues of the following integral equation:

λ

∫ 1

0
g(s)g(t)(min(t, s) − ts)f (s) ds = f (t);

there are two choices frequently used for the function g:

• g(t) = 1, in this case, λj = 1/π2j 2 and the limiting distribution is known as the Cramèr-von
Mises distribution.

• g(t) = {t (t − 1)}−1/2, in this case λj = 1/(j (j + 1)) and the limiting distribution is the
Anderson–Darling distribution.

The cumulative probability distributions of AD(g), with g(t) = 1 and g(t) = {t (t − 1)}−1/2,
and those of V, K0, Q(1, 1) have a known analytic expressions (see Appendix).

3.1.2 Consistency of non-parametric tests against the alternative of long memory
To establish the consistency for the non-parametric tests, we limit ourselves to the spectral
estimator (17) with the Bartlett window as a particular choice for w(.).

Proposition 2 Under the hypothesis H1, consider the non-parametric tests (11)–(16) where
σ̂ 2y = σ̂ 2n (q) = γ̂ (0) + 2∑q

j=1(1− j/(q + 1))γ̂ (j), and assume that q → ∞ as n→ ∞ and



































q

n
−→ 0 if 1

4 < d <
1
2

q log n

n
−→ 0 if d = 1

4
q1−2d

n1/2
−→ 0 if 0 < d <

1
4 ,

(25)
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then we have

σ̂ 2n (q)

(q + 1)2d
P−→ C2(d, δ), (26)

(

q + 1
n

)d
m1R/S√

n

L−→ Vd+1/2 = sup
0≤t≤1

Wd+1/2(t) − inf0≤t≤1 Wd+1/2(t), (27)
(

q + 1
n

)d
Kn√

n

L−→ Kd = sup
0≤t≤1

|Wd+1/2(t)|, (28)
(

q + 1
n

)2d
ADn(g)

L−→ AD(g, d) =
∫ 1

0
(g(t)Wd+1/2(t))2 dt, (29)

(

q + 1
n

)d

Ln(h)
L−→ L(h, d) =

∫ 1

0
h(t)Wd+1/2(t) dt, (30)

(

q + 1
n

)2d
Qn(g, h)

L−→ Q(g, h, d) =
∫ 1

0
(g(t)Wd+1/2(t))2 dt −

(∫ 1

0
h(t)Wd+1/2(t) dt

)2
,

(31)
where

C2(d, δ) = σ 2δ2Ŵ2(d)

(2d + 1)Ŵ(2d + 1) sin((d − 1/2)π)
,

Wd+1/2(t) = Bd+1/2(t) − tBd+1/2(1) is the fractional Brownian bridge.
Proof see Appendix. ¥

Remark It is not easy to verify the condition (25), since in practice the degree of integration
d is unknown. However, there are many choices for q independent of d and satisfying (25), for
example q ∼ C1nγ with 0 < γ ≤ 1/2 and for some strictly positive constant C1.
Recall that the Lo [33] statistic is given bym1R/S = R(n)/σ̂n(q).By assuming that the process

(yt ) is Gaussian satisfying
γ (k) ∼ k2d−1L(k) as k → ∞ (32)

and by using the fact that in this case the following convergence holds
1

nd+1/2L(n)1/2
[nt]
∑

k=1
yk =⇒ Bd+1/2(t), (33)

Lo [33] has shown that
m1R/S√

n

P−→ +∞

which implies that the test based on the statistic m1R/S/
√

n is consistent.
By assuming that (yt ) is an ARFIMA(0, d, 0) process, i.e. (1− L)d yt = ut where ut is a

Gaussian white noise, Lee and Schmidt [31] have shown that
(q

n

)2d KPSS L−→
∫ 1

0
(Wd+1/2(t))2 dt, (34)

where the KPSS is given by (14) with σ̂ 2y = 2πf̂ (0) and f̂ (0) is computed from (17) with the
Bartlett window (w(x) = 1− |x|). This implies that the test based on the KPSS statistic is consis-
tent against the alternative of fractionally integrated processes.However, to obtain the convergence
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(34) the normality assumption is not needed (see the proof of proposition 2 in the Appendix).
Indeed if we assume that (yt ) belongs to the class (5) then (34) follows from the Functional
Non-Central Limit Theorem (FNCLT)

1
nd+1/2

[nt]
∑

k=1
yk =⇒ C(d, δ)Bd+1/2(t). (35)

The convergence (31) was established by Giraitis et al. [19] for the particular case g(x) =
h(x) = 1 for all x, by assuming that the process is stationary satisfying (1) and (35), and imposing
a condition on the cumulants of order 4 (see condition (3.7), p. 272). Unfortunately, such condition
is very difficult to check and is not necessary to obtain the convergence (31), (see the proof of
Proposition 2 in the Appendix).
Here we obtain a more general results than those of Lo [33] and Lee and Schmidt [31], since

Proposition 2 implies that the tests based on the statistics m1R/S/
√

n, Kn/
√

n, ADn(g), Ln(h)

andQn(g, h) are consistent against the alternative H1 of long memory.

3.2 Semi-parametric tests
The semi-parametric tests are based on semi-parametric estimators of the longmemory parameter.
When such estimators are used, the spectral density of the underlying process is always assumed
to have the following form:

f (λ) = |1− eiλ|−2df ∗(λ), (36)
where f ∗ is a bounded spectral density. Then a test of long memory can be formulated as follows:

H0: d = 0
against

H1: d 6= 0.
To perform such a semi-parametric test, let d̂ be an asymptotically normal estimator of d:

d̂ − d

σn(d)

L−→ N(0, 1), (37)

for a given sequence σ 2n (d) > 0.
The null hypothesis H0: d = 0 is rejected at the significance level α if |d̂|/σn(d) > u1−α/2,

where u1−α/2 is the 1− α/2 percentile of N(0, 1).
In this paper we will be interested to the following three semi-parametric estimators.
The Geweke and Porter-Hudak estimator: It is given by

d̂GPH =
∑mn

j=1(Rj − R) log[In(λj )]
∑mn

j=1(Rj − R)2
, R = 1

mn

mn
∑

j=1
Rj , (38)

where
In(λ) = 1

n

∣

∣

∣

∣

∣

n
∑

t=1
yteitλ

∣

∣

∣

∣

∣

2
,

is the periodogram of (yt ), λj are the Fourier frequencies andRj = − log{4 sin2(λj/2)}. Geweke
and Porter-Hudak [16] showed that d̂GPH is asymptotically normal for d < 0 (i.e. the memory
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of the process is antipersistent) and the truncation parameter mn is such that 1/mn + mn/n →
0 as n → ∞, for example mn = nγ , 0 < γ < 1. The sequence in Equation (37) is σ 2n (d) =
π2/[6∑mn

j=1(Rj − R)2].
Hurvich et al. [28] extended theGeweke andPorter-Hudak’s result to the general case |d| < 1/2.

Moreover, based on the behaviour ofMSE, they recommendedmn = O(n4/5) as an optimal choice
for the truncation parameter.

The modified Geweke and Porter-Hudak estimator: To reduce the bias of the estimator d̂GPH,
Robinson [37] proposed to discard the first l low frequencies

d̂Rm =
∑mn

j=l+1(Rj − R) log{In(λj )}
∑mn

j=l+1(Rj − R)2
, R = 1

mn − l

mn
∑

j=l+1
Rj , 0 ≤ l < mn. (39)

Under the normality of (yt ) and some regularity conditions, he showed the asymptotic normality
of d̂Rm with σ 2n (d) = π2/24mn. Velasco [49] has extended Robinson’s [37] results to linear but
non-Gaussian processes.

The Robinson estimator: The spectral density of (yt ) is assumed to have the form (36) with
−1/2 < d < 1/2, then the Robinson estimator of d is given by

d̂GSP = argmin
d∈2

R(d), (40)
where 2 = [11, 12], 11 and 12 are chosen arbitrary between −1/2 and 1/2 such that −1/2 <

11 < 12 < 1/2, and

R(d) = log Ĝ(d) − 2d 1
mn

mn
∑

j=1
log λj , Ĝ(d) = 1

mn

mn
∑

j=1
λ2dj In(λj ).

Robinson [38] proved the asymptotic normality of d̂GSP by assuming that (yt ) is Gaussian, and
the following condition for the truncation parameter mn:

1
mn

+ m
2β+1
n

n2β
(logmn)

2 −→ 0 if n −→ ∞, (41)

where β depends on the regularity of the spectral density of (yt ) through the relation:
f (λ) ∼ Gλ−2d(1+ O(λβ)) if λ −→ 0+, 0 < d < 1/2, 0 < β ≤ 2.

The convergence (37) holds with σ 2n (d) = 1/4mn.

4. Monte Carlo simulations

We use the S-PLUS 6.0 software to carry out the Monte Carlo experiments.We study the size and
the power of the eleven following tests:
The non-parametric tests based on the following statistics:

• R/S: the statistic (11) with σ̂ 2y = γ̂ (0) = 1/n
∑n

t=1(yt − ȳn)
2.

• m1R/S: the statistic (11) with σ̂ 2y = 2πf̂ (0) and f̂ (0) is computed from (17) with the
Bartlett window (w(x) = 1− |x|), and the truncation parameter q is data-dependent given
by Equation (43) below.

• m2R/S : the statistic (11) with σ̂ 2y = 2πf̂ (0) and f̂ (0) is computed from (17) with the
Parzen window (w(x) = 1− x2) and the truncation parameter q is data-dependent given by
Equation (44) below.
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For the following other non-parametric tests we use σ̂ 2y = 2πf̂ (0), and f̂ (0) is computed from

(17) with the Parzen window (w(x) = 1− x2) and the truncation parameter q is data-dependent
given by Equation (44) below.

• Kn: the Kolmogorov statistic (12).
• CVM = ADn(1): the Cramèr-von Mises statistic i.e. the statistic (13) with g(t) = 1.
• ADn = ADn(g): the Anderson–Darling statistic (13) with g(t) = {t (t − 1)}−1/2.
• Ln = Ln(1): the linear statistic (15) with h(t) = 1.
• Qn = Qn(1, 1): the quadratic statistic with g(t) = h(t) = 1.

The semi-parametric tests based on the following statistics:

• GPH = d̂GPH/σn(d): the Geweke–Porter-Hudak statistic, d̂GPH is given by (38) and

σ 2n (d) =
[

π2

6∑mn

j=1(Rj − R)2

]

.

• GPHT = d̂Rm/σn(d): the truncated Geweke–Porter-Hudak statistic, d̂Rm is given by (39) and
σ 2n (d) = π2/24mn.

• R = d̂GSP/σn(d): the Robinson statistic, d̂GSP is given by (40) and σ 2n (d) = 1/4mn.

4.1 Choice of the truncation parameters
All the non-parametric (resp.semi-parametric) tests, exceptR/S, depend on the truncation param-
eter q (resp.mn). The optimal choice for q remains an open problem. Formn, we use the adaptive
procedure proposed by Hurvich and Deo [28] when we compute the statistic GPH. However, for
the statistic R, no optimal choice is known in the literature and this problem is not yet resolved.

Non-parametric tests: A good estimator for f (0) will give a test with a correct size. However,
if we use the spectral estimator (17), this one depends on the truncation parameter q. If we limit
ourselves to the class (7) of linear processes, a choice which makes a trade-off between the bias
and the variance is given by (18), the constantC can be computed by minimizing the mean square
error, MSE, of the estimator f̂ (0). Indeed, fromAnderson [1]:

MSE = E(f̂ (0) − f (0))2 ∼ n−2δ/(2δ+1)
{

AC + 1
C2δ B

}

,

A = 2f 2(0)
∫ 1

−1
w2(x) dx, B = K2

(

1
2π

∑

r∈Z

|r|δγ (r)

)2
,

the constant K is given by (19). By minimizing the MSE with respect to C we get Copt =
(2δA/B)1/(2δ+1), and hence

q =
[

(2δA
B

n

)1/(2δ+1)]
,

A and B depend on the spectral density of the process (yt ). For example, if (yt ) is an AR(1):

yt = ayt−1 + ut , (42)
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then an optimal choice for q should be

q =
[

( 7.5â2
(1− â)4

n

)1/3]
(for the Bartlett window), (43)

q =
[

( 6â2
(1− â2)2

n

)1/5]
(for the Parzen window), (44)

where â is the least squares estimator of the parameter a in the model (42). However, such
choices are not optimal since the dynamic of the time series is unknown and usually different from
Equation (42). Nevertheless, for all non-parametric tests, except them1R/S test, we use the Parzen
window, i.e. σ̂ 2y = σ̃ 2n (q) = γ̂ (0) + 2∑q

j=1(1− (j/(q + 1)2))γ̂ (j), where q is data-dependent
via the formula (44).

Semi-parametric tests: For the GPH statistic we use the data-driven truncation parameter
suggested by Hurvich and Deo [28]

mn =
[

( 27
128π2 K̂

−2n4
)1/5]

,

where K̂ is the least squares estimator of the third parameter in regressing log{In(λj )} on
(1, log |2 sin(λj/2)|, λ2j/2).
To compute the Robinson statistic R we take mn = [n1/2], with this choice the condition (41)

holds if the process (yt ) is assumed to be an ARFIMA.

4.2 Size
The R/S, m1R/S, m2R/S, Kn, CVM, ADn andQn are one side tests, i.e. the null is rejected if
the p-value is lesser than α at a significance level α. The other tests are two sides, i.e. the null is
rejected if the p-value is lesser than α/2 at a significance level α. To study the size of the tests,
we consider two data generating processes (DGP):
• The AR(1):

yt = φyt−1 + ut , (ut ) ∼ i.i.d.N(0, 1).
• The ARMA(1,1):

yt − φyt−1 = ut − θut−1, (ut ) ∼ i.i.d.N(0, 1) with φ = 0.5, θ = −3.
For the AR(1), the parameter φ takes two values, φ = 0.5 (the process is weakly dependent),

andφ = 0.9 (the process is in the neighbourhood of the unit root, and hence nearly non-stationary).
We carry out an experiment of 1000 replications, and we use three different sample sizes, n =
100, n = 500 and n = 1000.

The Analysis of the Simulation Results for anAR(1)
From Table 1, we observe that the size distortions are reasonable for the non-parametric tests

except the R/S test. For the R/S test the distortion is severe, this was also pointed out by Lo
[33] and Giraitis et al. [19]. For example, if n = 500 and α = 5%, then we obtain an empirical
size equal to 66.7%, Lo (1991) reported the value 55.9% and Giraitis et al. [19] reported the
value 66.58%. The size distortions of m2R/S (the modified R/S test with Parzen window) are a
bit greater than m1R/S (the modified R/S with Bartlett window). For example if n = 500 and
α = 5%, then the empirical size of m1R/S is 2.8% whereas the empirical size of m2R/S is 2%.
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Table 1. Empirical test sizes (in %).

Sample size n n = 100 n = 500 n = 1000
Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 26.3 46.8 59.7 43.7 66.7 59.7 49.9 70.9 79.9
m1R/S 0 0.3 1.4 0.4 2.8 7.4 0.7 4.3 8.2
m2R/S 0 0.2 1 0.3 2 5.6 0.7 3.8 7.3
Kn 0.1 0.7 2.3 0.4 1.9 3.7 0.2 2 5.2
CVM 0 6.2 12.9 0.7 5 10.1 1.1 4.8 10.7
ADn 0.8 3.9 10.8 0.3 3.6 9.5 0.7 3.3 10.5
Ln 0 6.8 13.5 0.8 5.2 11.3 1.1 5.3 10.8
Qn 0.6 2.8 9.3 0.7 3.8 9.8 1.4 5.1 9.8
GPH 18.4 33.2 43.1 24.8 35.9 43.8 24 35.7 45.8
GPHT 60.4 71.3 75.6 42 54.3 62.4 38.6 51.4 59.4
R 11.7 29.1 36.8 6.4 14.5 23.7 4.9 12.1 17.8
Note: The table contains rejection frequencies of the null hypothesis of short memory using the 11 tests. Rejection
frequencies are based on 1000 replications generated from the DGP: yt = 0.5yt−1 + ut , ut ∼ i.i.d.N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

The Kn test is more conservative, i.e. the empirical size is always lesser that the nominal one.
The empirical sizes of CVM, ADn, Ln andQn are much closer to their nominal values. The size
distortions are large for all semi-parametric tests. The size distortions of GPHT are greater than
GPH, for example if n = 1000 and α = 10%, then the empirical size of GPHT is 59.4% whereas
the empirical size of GPH is 45.8%. The R test has also a size distortion which decreases as the
sample size n increases.

Remark For m1R/S (the modified R/S with Bartlett window), the averages of q over the 1000
replications take values around 3,4 and 5 if the sample size n is equal to 100,500 and 1000,
respectively. For the other test we use the Parzen window and the averages of q over the 1000
replications take values around 14,25 and 31 if the sample size n is equal to 100,500 and 1000,
respectively.

To save space in the rest of the paper we present only the results of the following six tests3:
• The two non-parametric R/S andm2R/S tests. The Lo [33] testm1R/S has similar properties
as m2R/S, and then is discarded.

• The two non-parametric Ln andQn tests. The first is a linear functional of the partial sums Sk

given by Equation (10), the second is quadratic. The results of theKn test are worse and hence
are removed. The CVM, ADn(g) andQn statistics are functional of S2k , hence we suppress theresults of CVM and ADn(g) which are similar to those obtained for theQn test.

• The two semi-parametric GPH and R tests. The GPHT test gives a worse results than GPH,
and hence is removed.
From Table 2, we observe that if the parameter φ = 0.9 (the process is near a unit root process

which is non-stationary), then all the tests suffer from a large size distortion. For instance, among
the 1000 replications, no one is retained as a short memory by the GPH test! The size distortions
of the non-parametric tests, except the R/S test, are clearly lesser than the semi-parametric
ones. For example, if n = 500 and α = 5%, then the empirical sizes of m2R/S, Ln andQn are,
respectively, 16%, 17% and 27.6% whereas the sizes of GPH and R are 100% and 84.5%. By
increasing the sample size the tests are not improved. These results are not surprising since the
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Table 2. Empirical test sizes (in %).

Sample size n n = 100 n = 500 n = 1000
Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 95.4 98.3 99.1 99.8 100 100 100 100 100
m2R/S 0 0 0.9 3.8 16 27.6 7.2 20.7 31.2
Ln 0.5 23.7 35.1 6.3 17 24 5.1 14.9 25
Qn 0.3 15 35 11.7 27.6 41.4 11.2 26.6 38.5
GPH 100 100 100 100 100 100 100 100 100
R 85.8 91.3 94 73.7 84.5 89.1 55 72 79.9
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: yt = 0.9yt−1 + ut , ut ∼ i.i.d.N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

limiting distributions established in the proposition 1 under the null of short memory no longer
hold if φ = 1.

The analysis of the simulation results for anARMA(1,1).
By comparingTables 1 and 3 (i.e. by adding amoving average component to theAR(1) process)

we observe the following: the size distortion of the R/S increases, for example if n = 500 and
α = 5%, then the empirical size in theAR(1) is 66.7% and increases to 81.7% in theARMA(1,1).
The size distortion ofm2R/S,Ln andQn are almost the same for the twoDGPs.The size distortion
of GPH increases, for example if n = 500 and α = 5%, then the empirical size of GPH in the
AR(1) is 35.9% and increases to 100% in the ARMA(1,1). The size distortions of R are almost
the same for the two DGPs, for example if n = 500 and α = 5%, then the empirical size of R in
the AR(1) is 14.5% and decreases to 13.9% in the ARMA(1,1).
We can point out that in the class of the semi-parametric tests, the GPH test is less robust to

short memory than the R test.

4.3 Power
To study the power of all tests, we generate two long memory processes. The first one is an
ARFIMA generated by using the function arima.fracdiff.sim in SPLUS 6.0. The second is a FGN
by using Beran’s [4] code.

The analysis of the simulation results for anARFIMA(0,d,0).

Table 3. Empirical test sizes (in %).
Sample size n n = 100 n = 500 n = 1000

Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 38.8 59.9 71.8 61.2 81.7 88.7 65.5 83.9 91.8
m2R/S 0 0.6 1.7 0.6 4.1 7.9 0.3 4 8.5
Ln 1.2 6.3 12.7 1.4 6.1 12.3 1 5.4 10.2
Qn 0.3 5.6 12.3 1.5 6.8 13.3 0.9 5.8 11.6
GPH 94.6 98.5 99.2 100 100 100 100 100 100
R 15.4 28.5 37 6.5 13.9 20.7 4.3 10.4 17.6
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: yt = 0.5yt−1 + ut + 3ut−1, ut ∼ i.i.d.N(0, 1)
where the nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.
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The DGP is the ARFIMA(0,d,0):

(1− L)dyt = ut , where(ut ) ∼ i.i.d.N(0, 1), (45)
we consider three values for d, d = 0.1, d = 0.3 and d = 0.4.
FromTables 4–6, we observe that for a given sample size n, the power of the tests are improved

considerably as we increase the degree of integration d. For example, when n = 500 and α = 5%,

the empirical power of m2R/S for d equals to 0.1, 0.3 and 0.4 are 24.2%,52.1% and 72.4%,
respectively.
We observe also that for d fixed, the rejection frequencies of the null increase with the sample

size n. For example, if d = 0.3 (Table 5) and α = 10%, then the empirical power of m2R/S is
10.6% if n = 100. Increasing n to 500 and to 1000 observations, the empirical power becomes
respectively 63.5% and 79.9%. The empirical power ofR is 55.1% if n = 100, increases to 81.1%
if n = 500 and then increases to 90.6% if n = 1000.

The analysis of the simulation results for FGN
The DGP is the FGN given by (6) with d = 0.4 and σ 2 = 1.
From Tables 5 and 7, we note that the rejection frequencies of H0 for FGN with d = 0.4 are

greater than those obtained for theARFIMA (0, 0.3, 0). For example if n = 500 and α = 5%, then
the empirical power of m2R/S is 52.1% if the DGP is an ARFIMA (0, 0.3, 0) and increases to
67.4% if the DGP is a FGN. This can be explained by the behaviour of the spectral densities of the
two processes in the neighbourhood of 0. The spectral density of a FGN is equivalent to c1|λ|−2d ,
the one ofARFIMA behaves also like c2|λ|−2d . Consequently the memory of a FGNwith d = 0.4

Table 4. Empirical test powers (in %).
Sample size n n = 100 n = 500 n = 1000

Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 3.4 11.1 18.2 21 38.4 50.8 25.9 44.5 56.7
m2R/S 0.6 3.7 9.5 9.1 24.2 35.4 14.2 28.4 39
Ln 2.3 10 15.9 5.7 17.9 26.6 7.6 17.3 24.7
Qn 1.6 10.6 18.6 10.7 27 39.9 12.7 26.5 38.8
GPH 2.8 12.3 20.4 20.2 41.6 54.7 41.5 64.3 73.1
R 15.7 28.2 36.4 10.2 22.6 33 10.7 22.9 32.5
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1− L)0.1yt = ut , ut ∼ i.i.d.N(0, 1) where the
nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

Table 5. Empirical test powers (in %).
Sample size n n = 100 n = 500 n = 1000

Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 42.2 61.5 70.3 91.9 97.1 98.4 98.5 99.5 99.7
m2R/S 0.4 3.9 10.6 27.2 52.1 63.5 53.2 72 79.9
Ln 6.8 22.8 32.5 24.2 36.9 46.7 29.6 44.3 52.4
Qn 3.4 18.8 34.5 35 58.6 69.9 55.7 71.4 80.2
GPH 25.1 48.1 58.9 80.4 92.7 95.7 94.8 98.7 99.4
R 33.1 47.9 55.1 55.4 74.2 81.1 72.8 86.6 90.6
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1− L)0.3yt = ut , ut ∼ i.i.d.N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.
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Table 6. Empirical test powers (in %).

Sample size n n = 100 n = 500 n = 1000
Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 64.4 80.8 86.6 98.9 99.8 99.8 100 100 100
m2R/S 0.6 10.2 22.5 55.9 72.4 82.1 73.4 87 91.5
Ln 13 30.1 40.1 36.4 51.2 59.6 44.3 55.9 62.9
Qn 10.3 33.6 49.9 60.7 78.8 86.8 74.6 87.2 91.5
GPH 74.2 88.2 92.2 100 100 100 100 100 100
R 47.8 63.5 70.9 81.9 91.4 93.3 91.4 97.3 98.1
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP: (1− L)0.4yt = ut , ut ∼ i.i.d.N(0, 1) where the
nominal significance levels are 1% , 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

Table 7. Empirical test powers (in %).
Sample size n n = 100 n = 500 n = 1000

Test Level α 1% 5% 10% 1% 5% 10% 1% 5% 10%
R/S 71.1 85 89.1 98.6 99.9 99.9 99.7 99.9 100
m2R/S 0.1 7 17.4 46.5 67.4 76.6 73.1 87.3 91.8
Ln 14.6 30.4 40.3 31.5 46.1 54.1 42.9 57.3 62
Qn 6.7 31.3 46.2 54 72.7 81.2 73.8 86.6 91.8
GPH 88.7 95.1 97.6 100 100 100 100 100 100
R 49.6 64.2 70.8 79.1 88.5 91.8 92.4 96.3 97.8
Note: The table contains rejection frequencies of the null hypothesis of short memory using the six tests. Rejection
frequencies are based on 1000 replications generated from the DGP which is the FGN given by (6) with d = 0.4 and
σ 2 = 1 where the nominal significance levels are 1%, 5% and 10%, the sample sizes are n = 100, n = 500 and n = 1000.

is greater than the one of anARFIMA(0, 0.3, 0) [in the sense that the spectral density of the FGN
goes, as λ → 0, to infinity faster than the one of the ARFIMA(0, 0.3, 0)]. The ARFIMA(0, 0.4,
0) and the FGN with d = 0.4 have the same memory, and the rejection frequencies of H0 for the
two processes are remarkably similar: Compare Tables 6 and 7.

4.4 Nominal size-empirical size curves
The size distortion of tests can easily be identified by plotting the curve (xi, F̂0(xi))1≤i≤m, where

F̂0(xi) = 1
N

N
∑

j=1
1{pj ≤xi }, (46)

where pj is the p-value of the test corresponding to the significance level xi obtained in the j th
simulation, and the DGP satisfies the null hypothesis H0.
For the nominal sizes we choose the grid

xi = 0.001, 0.002, . . . , 0.01; 0.015, . . . , 0.3 (m = 68). (47)
We generate an AR(1) with φ = 0.6, and an ARMA(1,1) with φ = 0.4 and θ = −3. For each

DGP we perform N = 5000 replications. We use two sample sizes n = 100 and n = 500.
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Figure 1. The size distortions.
Note: The DGP is the AR(1): yt = 0.6yt−1 + ut , the sample size is n = 100.

Figure 1 shows that, if the process is weakly dependent, then theR/S test has always a positive
bias, whereas the one of the m2R/S test is always negative. The tests Ln andQn have a negative
bias for small nominal sizes, which becomes positive when the nominal size increases. The
semi-parametric GPH and R tests have a positive bias. As the sample size increases (Figure 2),

Figure 2. The size distortions.
Note: The DGP is the AR(1): yt = 0.6yt−1 + ut , the sample size is n = 500.
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the size distortion of R/S increases, the bias of m2R/S remains negative but decreases, the bias
of Ln and Qn decrease and become positive for almost significance level xi, the size distortion
of GPH increases, finally the bias of R is still positive but decreases.
Figures 3 and 4, compared with Figures 1 and 2, show that the behaviour of the non-parametric

R/S, m2R/S andQn tests for ARMA(1,1) process is fairly similar to the one obtained forAR(1)
process. The size distortion of Ln increases. The curves of GPH and R are reversed.

4.5 Size-power curves
The comparison of tests can easily be performed by plotting the size-power curves, i.e. the empir-
ical size is plotted in the horizontal axis and the empirical power is plotted in the vertical axis.
Such method was suggested by Davidson and MacKinnon [10] to adjust the power to the correct
size. The most useful test is the one having the nearest curve to the shape Ŵ, joining the points
(0,0),(0,1) and (1,1). For each test we plot the curve (F̂0(xi), F̂1(xi)), where F̂0(xi) is given by
Equation (46),

xi = 0.001, 0.002, . . . , 0.01; 0.015, . . . , 0.985; 0.990, 0, 0991, . . . , 0.999 (m = 215), (48)
and

F̂1(xi) = 1
N

N
∑

j=1
1{pj ≤xi },

where pj is the p-value of the test corresponding to the significance level xi obtained in the j th
simulation, and the DGP satisfies the alternative hypothesis H1.
We carry out four experiments.
Experiment 1: To compute the empirical size and the empirical power, we generate an AR(1)

with φ = 0.6, and an ARFIMA(0,0.3,0), respectively.

Figure 3. The size distortions.
Note: The DGP is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the sample size is n = 100.
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Figure 4. The size distortions.
Note: The DGP is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the sample size is n = 500.

Recall that the most useful test is the one having the nearest curve to the shape Ŵ, joining the
points (0,0),(0,1) and (1,1). Figure 5 shows that the m2R/S and Qn tests are more useful than
the others. The curve of GPH is over the other curves for large empirical size, this should be

Figure 5. Size-power curves.
Note: The DGP under H0 is the AR(1): yt = 0.6yt−1 + ut , the DGP under H1 is the ARFIMA(0,0.3,0):
(1− L)0.3yt = ut , the sample size is n = 100.



964 M. Boutahar

Figure 6. Size-power curves.
Note: The DGP under H0 is the AR(1): yt = 0.6yt−1 + ut , the DGP under H1 is the ARFIMA(0,0.3,0):
(1− L)0.3yt = ut , the sample size is n = 500.

interpreted with a care. Indeed, the GPH test does not perform better than the other since its curve
is far from the point (0,0). This worse property can be explained as follows: we observe from
Figure 1 and 2 that the curve of GPH is always over the 45◦ line with a high values, which means
that the test over-rejects the null. Moreover, it is well known that tests who over-reject the null
have always a high power. Note that the empirical size is greater than 16.44% and the empirical
power is greater than 56.34% for all significance level xi ≥ 0.001. The R/S test has the same
problem as GPH.
As the sample size n increases, Figure 6, the m2R/S and Qn tests remain preferable with a

slight superiority ofm2R/S. The curve ofR becomes closer to the ones ofm2R/S andQn, which
means that the performance of the R test becomes equivalent to m2R/S and Qn. However, the
R test suffers from a small size distortion: the observed rejection frequencies exceed 1.88% for
every significance level xi ≥ 0.001.

Experiment 2: The DGP under H0 is an ARMA(1,1) with φ = 0.4 and θ = −3, and the DGP
under H1 is an ARFIMA(0,0.3,0).
Figures 7 and 8 provide similar results to those observed in Figures 5 and 6 whenAR(1) process

is used as a DGP under H0.
Experiment 3: The DGP under H0 is an ARMA(1,1) with φ = 0.4 and θ = −3, and the DGP

under H1 is a FGN with d = 0.4.
If the DGP under H1 is a FGN, then the results are different from those obtained when the

DGP is an ARFIMA. Figures 9 and 10 show that the R/S, GPH and R tests suffer from a
size distortion since their curves are far from the point (0, 0). The performances of m2R/S

and Qn are reversed comparing to the case when the DGP is an ARFIMA (Figures 7 and 8):
the Qn test becomes preferable to m2R/S. As the sample size n increases, Figure 10, the
spread between m2R/S and Qn decreases. Only the curves of m2R/S, Ln and Qn approach
the shape Ŵ.
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Figure 7. Size-power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the
ARFIMA(0,0.3,0): (1− L)0.3yt = ut , the sample size is n = 100.

Figure 8. Size-power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the
ARFIMA(0, 0.3, 0): (1− L)0.3yt = ut , the sample size is n = 500.
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Figure 9. Size-power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the FGN
with d = 0.4, the sample size is n = 100.

Figure 10. Size-power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the FGN
with d = 0.4, the sample size is n = 500.

Experiment 4: The DGP under H0 is an ARMA(1,1) with φ = 0.4 and θ = −3, and the DGP
under H1 is the square of an ARFIMA(0,0.3,0):

yt = X2
t

E(X2
t )

− 1, (1− L)0.3Xt = ut , where (ut ) ∼ i.i.d.N(0, 1). (49)
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Figure 11. Size-Power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the square
of the ARFIMA given by Equation (49), the sample size is n = 100.

The process (yt ) is nonlinear, and hence does not satisfy the alternative hypothesisH1.However
it has long memory. Indeed, if (Xt ) is an ARFIMA(0, d1, 0) then the autocovariance func-
tion of (yt ) is such that γ (k) ∼ c1k2(2d1−1) as k → ∞, and hence satisfies the definition (1),
(see Taqqu [41]).
If the DGP underH1 is a nonlinear process, the results are also different from those obtained in

the two precedent experiments. Figure 11 shows thatR/S is a biased test (i.e. the empirical size is
greater than the power). The curves of GPH and R are far from (0,0) which implies that the tests
suffer from a size distortion. The curve of Ln is near the 45◦ line and then the test is conservative
(i.e. the size and the power are low). The m2R/S and Qn tests are equivalent and better than
the other tests. As the sample size n increases, Figure 12, the R/S test becomes non-biased but
has, like the GPH test, a size distortion. The test Ln remains always conservative. Finally, the
spreads between m2R/S,Qn and R decrease, and hence the performance of R approaches those
of m2R/S andQn.

5. Conclusion

We have presented and compared some tests to detect long memory in time series. Based on a
limited Monte Carlo experiments, some remarks can be drawn from this study:

• The R/S test has worse properties. This is a well-known result, the test over-rejects the null,
see Lo [33].

• The m2R/S test is more useful.
• The Kn and Ln tests, which are functional of the partial sums Sk given by Equation (10), are
conservative with a low power. Consequently they are less useful.
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Figure 12. Size-Power curves.
Note: The DGP under H0 is the ARMA(1,1): yt = 0.4yt−1 + 3ut−1 + ut , the DGP under H1 is the square
of the ARFIMA given by Equation (49), the sample size is n = 500.

• The ADn(g) and Qn(g, h) tests, which are quadratic functional of the partial sums Sk, have a
good performance even for small sample size. Such tests are also more useful in goodness-of-fit
testing (see [2]).

• The semi-parametric tests have worse properties for small sample size. The GPH and GPHT
tests have a size distortion greater than the one of R. The latter has the same performance as
the non-parametric tests m2R/S andQn(g, h) for large sample size.

As a conclusion we suggest the use of the non-parametricmR/S,ADn(g) andQn(g, h) tests if
the sample size is small. This is the case for low frequency data (annual, quarterly and monthly).
For example macroeconomic samples are often small.
If the sample size is large, as in the case for financial data, then the semi-parametric R test can

also be used to detect the presence of long memory. Finally, the R/S,GPH and GPHT tests must
be used with a care.
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Notes

1. Such hypothesis can be tested by using the nonlinearity tests (see [45,46]).
2. Such hypothesis can be tested by using the KPSS test of Kwiatkowski et al. [30], theADF test of Dickey and Fuller
[13] and the PP test of Phillips and Perron [36].

3. Results of the other tests are available upon request.



Journal of Applied Statistics 969
References

[1] T.W. Anderson, The Statistical Analysis of Time Series, Wiley, NewYork, 1971.
[2] T.W.Anderson andD.A.Darling,Asymptotic theory of certain ’goodness of fit’criteria based on stochastic processes,

Ann. Math. Statist. 23 (1952), pp. 193–212.
[3] J. Beran, Statistics For Long-Memory Processes, Chapman & Hall, NewYork, 1994.
[4] J. Beran and N. Terrin, Testing for a change of the long-memory parameter, Biometrika 83(3) 1996,

pp. 627–638.
[5] P. Billingsley, Convergence of Probability Measures, Wiley, NewYork, 1968.
[6] M. Boutahar, V. Marimoutou, and L. Nouira, Estimation methods of the long memory parameter: Monte Carlo

analysis and application, J. Appl. Statist. 34(3) (2007), pp. 261–301.
[7] P.J. Brockwell and R.A. Davis, Time Series: Theory and Methods, Springer-Verlag, NewYork, 1991.
[8] G.E.P. Box and G.M. Jenkins, Time Series Analysis, Forecasting and Control, Holden Day, San Francisco,

1970.
[9] N.H. Chan and N. Terrin, Inference for unstable long-memory processes with applications to fractional unit root

autoregression, Ann. Statist. 23(5) 1995, pp. 1662–1683.
[10] R. Davidson and J.G. MacKinnon, Graphical methods for investigating the size and the power of hypothesis tests,

The Manchester School 66 (1998), pp. 1–26.
[11] Yu.A. Davydov, The invariance principle for stationary processes, Theory Probab. Appl. 15 (1970),

pp. 487–498.
[12] Cl. Deniau, P. Doukhan, G. Oppenheim, and E. Renault, Théorèmes limites et Longue Mémoire en Statistique,

Stat. Inference Stoch. Process. 3(1–2) (2000), pp. 1–198.
[13] D.A. Dickey andW.A. Fulller, Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica

49 (1981), pp. 1057–1072.
[14] P. Doukhan, G. Oppenheim, and M.S. Taqqu, Theory and Applications of Long-Range Dependence, Birkhäuser,

Boston, MA, 2003.
[15] W. Feller, The asymptotic distribution of the range of sums of independent random variables, Ann. Math. Statist. 22

(1951), pp. 427–432.
[16] J. Geweke and S. Porter-Hudak, The estimation and application of long-memory time series models, J. Time Ser.

Anal. 4 (1983), pp. 221–238.
[17] L.A. Gil-Alana, A fractional integration of the population in some OECD countries, J. Appl. Statist. 30(10) (2003),

pp. 1–13.
[18] L. Giraitis and D. Surgailis, CLT and other limit theorems for functionals of Gaussian sequences, Z. Wahrschein-

lickeitstheac Verwandte Geb 70 (1985), pp. 191–212.
[19] L. Giraitis, P. Kokoszka, R. Leipus, and G. Teyssière, Rescaled variance and related tests for long memory in

volatility and levels, J. Econometrics 112 (2003), pp. 265–294.
[20] H. Graf, Long range correlations and estimation of self-similarity parameter, Ph.D. thesis, ETH Zürik,

1983.
[21] C.W.J. Granger and R. Joyeux, An introduction to long-memory time series models and fractional differencing,

J. Time Ser. Anal. 1 (1980), pp. 15–29.
[22] U. Hassler, and J. Wolters, Long memory in inflation rates: International evidence, J. Bus. Econom. Statist. 13

(1995), pp. 37–45.
[23] H.C. Ho and T. Hsing, Limit theorems for functionals of moving average, Ann. Probab. 25 (1997), pp. 1636–1669.
[24] J.R.M. Hosking, Fractional differencing, Biometrika 68 (1981), pp. 165–176.
[25] J.R.M. Hosking,Modelling persistence in hydrological time series using fractional differencing, Water Res. Res. 20

(1984), pp. 1898–1908.
[26] J.R.M. Hosking, Asymptotic distribution of the sample mean, autocovariances, autocorrelations of long-memory

time series, J. Econometrics 73 (1996), pp. 261–284.
[27] H.E. Hurst, Long-term storage capacity of reservoirs, Trans. Amer. Soc. Civil Eng. 116 (1951), pp. 770–799.
[28] C.M. Hurvich and R.S. Deo, Plug-in selection of the number of frequencies in regression estimates of the memory

parameter of a long-memory time series, J. Time Ser. Anal. 3 (1998), pp. 331–341.
[29] R.J. Kulperger and R.A. Lockhart, Tests of independence in time series, J. Time Ser. Anal. 2(19) (1998),

pp. 165–185.
[30] D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, and Y. Shin, Testing the null hypothesis of stationarity against the

alternative of unit root: how sure are we that economic time series have unit root? J. Econometrics 54 (1992),
pp. 159–178.

[31] D. Lee and P. Schmidt, On the power of the KPSS unit root test against fractionally integrated alternative,
J. Econometrics 73 (1996), pp. 285–302.

[32] W.E. Leland, M.S. Taqqu, W.Willinger, and D.V. Wilson, On the self-similar nature of Ethernet traffic, IEEE/ACM
Trans. Netw. 2(1) (1994), pp. 1–15.



970 M. Boutahar
[33] A. Lo, Long-term memory in stock market prices. Econometrica 59 (1991), pp. 1279–1313.
[34] B.B. Mandelbrot, Sur certains prix spéculatifs: faits empiriques et modèle basé sur les processus stables additifs de

Paul Lévy, C. R. Math. Acad. Sci Paris 254 (1962), pp. 3968–3970.
[35] B.B. Mandelbrot andM.S. Taqqu, Robust R/S analysis of long run serial correlation, Proceeding of the 42nd Session

of the International Statistical Institute, Manila, Bulletin of the I.S.I vol. 48(Book 2) (1979), pp. 69–104.
[36] P.C.B. Phillips and P. Perron, Testing for a unit root in time series regression, Biometrika 75 (1988),

pp. 335–346.
[37] P.M. Robinson, Log-periodogram regression of time series with long range dependence, Ann. Statist. 23 (1995a),

pp. 1048–1072.
[38] P.M. Robinson, Gaussian semiparametric estimation of long range dependence, Ann. Statist. 23 (1995ab),

pp. 1630–1661.
[39] P.M. Robinson, Times Series with Long Memory. Advanced Texts in Econometrics. Oxford University Press,

NewYork, 2003.
[40] M.S. Taqqu,Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z.Wahrscheinlichkeit-

stheor Verwandte Geb. 31 (1975), pp. 287–302.
[41] M.S. Taqqu, Fractional Brownian motion and long-range dependence. in P. Doukhan, G. Oppenheim, and

M.S. Taqqu, eds. Theory and Applications of Long-Range Dependence, Birkhäuser, Boston, MA, 2003, pp. 5–38.
[42] M.S. Taqqu, V. Teverovsky, and W. Willinger, Estimators for long-range dependence: an empirical study, Fractals

3(4) (1995), pp. 785–798.
[43] M.S. Taqqu, W. Willinger, R. Sherman, and D. Wilson, Self-similarity through high-variability: statistical analysis

of Ethernet LAN traffic at the source level, IEEE/ACM Trans. Netw. 5(1) (1997), pp. 71–96.
[44] T. Teräsvirta, Testing linearity and modelling nonlinear time series, Kybernetika 30(3) (1994), pp. 319–330
[45] H. Tong, Non-linear Time Series, A Dynamical System Approach, Clarendon Press, Oxford, 1990.
[46] K. Torre, D. Delignières, and L. Lemoine, Detection of long-range dependence and estimation of fractal exponents

through ARFIMA modelling, Br. J. Math. Statist. Psychol. 60(1) (2007), pp. 85–106.
[47] C. Velasco, Non-Gaussian log-periodogram regression, Econom. Theory 16 (2000), pp. 44–79.
[48] G.S. Watson, Goodness-of-fit tests on a circle, Biometrika 48 (1961), pp. 109–114.
[49] W. Willinger, M.S. Taqqu, and V. Teverovsky, Stock market prices and long-range dependence, Finance Stoch.

3 (1999), pp. 1–13.

Appendix

A.1 Proof of proposition 1
The convergences (20)–(24) can easily be deduced from the fact that all the statistics can bewritten
as continuous functional of the term in the left-hand side of (8), and by using the continuous
mapping theorem: that is for all (Xn), X ∈ D[0, 1], if Xn ⇒ X then g(Xn) ⇒ g(X) for all
continuous function g. For example let us prove the convergence (20). Let

Qn = R(n)√2πnf (0) , Xn(t) = 1√2πnf (0)
[nt]
∑

k=1
yk, Yn(t) = max0<k<n S[nt] −min0<k<n S[nt]√2nπf (0) .

We have
mR/S√

n
=

√
f (0)

√

f̂ (0)
Qn, Yn(t) = g(Xn(t)) and Qn = Yn(1),

where g :D[0, 1] → D[0, 1] is given by
∀τ ∈ (0, 1), g(x)(τ ) = sup

0≤t≤τ

(x(t) − tx(1)) − inf0≤t≤τ
(x(t) − tx(1)),

x = (x(t), t ∈ (0, 1)) ∈ D[0, 1].
The convergence (8) implies that Yn ⇒ g(B), consequently

Qn = Yn(1) L−→ g(B)(1) = sup
0≤t≤1

B0(t) − inf0≤t≤1B0(t) = V.

Finally, since √
f (0)/

√

f̂ (0) converges in probability toward 1, the weak convergence of
mR/S/

√
n to V follows immediately.
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A.2 The cumulative distribution functions of the random variables V, K0,AD(g)

and Q(1, 1):
The random variable V measures the extent of the Brownian bridge, hence its cumulative
distribution function is given by (see [15]):

FV (x) =
+∞
∑

k=−∞
(1− 4x2k2)e−2x2k2 .

The random variable K0 has a Kolmogorov distribution (see [5, p. 85]),

FK0(x) = 1+ 2
+∞
∑

k=1
(−1)ke−2x2k2 .

The cumulative distribution function of the random variableAD(1) is a somewhat complicated
(see [2, p. 202])

FAD(1)(x) = 1
π

√
xπ

+∞
∑

k=0

Ŵ(k + 1/2)
k!

√4k + 1e−(4k+1)2/16xK1/4
(

(4k + 1)2
16x

)

,

K1/4 is the Bessel function:

K1/4(y) = π√2 (I−1/4(y) − I1/4(y)), In(x) =
+∞
∑

k=0

(x

2
)n+2k 1

Ŵ(n + k + 1)k! .

The cumulative distribution function of the randomvariableAD(g),with g(t) = {t (t − 1)}−1/2,
is given by (see [2, p. 204])

FAD(g)(x) = 1
x
√2

+∞
∑

k=0

(−1)kŴ(k + 1/2)
k!

√4k + 1
∫ 1

0
e−(rx/8)−((4k+1)2π2/8rx) dr

r3/2(1− r)1/2
.

The random variableQ(1, 1) has the following cumulative distribution function (see [50])

FQ(1,1)(x) = 1+ 2
+∞
∑

k=1
(−1)ke−2x2π2k2 .

A.3 Proof of Proposition 2
The convergence (26) can be deduced fromTheorem 3 of Hosking [26]. Let ‖X‖p = {E(|X|p}1/p
denotes the Euclidian norm of the random vector X ∈ Lp(Ä). From Theorem 3 of Hosking [26],
we have for all k

‖γ̂ (k) − γ (k)‖2 ∼























c21n2(2d−1) if 14 < d <
1
2

c22
log n

n
if d = 1

4
c23n−1 if 0 < d <

1
4 ,

(A1)

for some positive constants c1, c2 and c3. Let σ 2n (q) = γ (0) + 2∑q

j=1(1− j/(q + 1))γ (j) =
1/(q + 1) var(∑q

j=1 yj ). Since var(∑q

j=1 yj ) ∼ q2d+1C2(d, δ), then for n large enough we have
σ 2n (q) ∼ q2dC2(d, δ).Moreover

∥

∥

∥

∥

σ̂ 2n (q)

(q + 1)2d − C2(d, δ)

∥

∥

∥

∥1
≤

∥

∥

∥

∥

σ̂ 2n (q)

(q + 1)2d − σ 2n (q)

(q + 1)2d
∥

∥

∥

∥1
+

∣

∣

∣

∣

σ 2n (q)

(q + 1)2d − C2(d, δ)

∣

∣

∣

∣

. (A2)
The second term in the right-hand side of Equation (A2) converges to zero as q → ∞, hence the
convergence (26) holds if the first term in the right-hand side of Equation (A2) converges also to
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zero as q → ∞.We have that

L(n, q, d) : =
∥

∥

∥

∥

σ̂ 2n (q)

(q + 1)2d − σ 2n (q)

(q + 1)2d
∥

∥

∥

∥1

= 1
(q + 1)2d

∥

∥

∥

∥

∥

∥

γ̂ (0) − γ (0) + 2
q

∑

j=1
(1− j

q + 1 )(γ̂ (k) − γ (k))

∥

∥

∥

∥

∥

∥1

≤ (q + 1)1−2d max0≤k≤q
‖(γ̂ (k) − γ (k))‖1

From Equation (A1) it follows that

L(n, d, q) ≤



































c1
(

q + 1
n

)1−2d
if 14 < d <

1
2

c2
(

(q + 1) log n

n

)1/2
if d = 1

4
c3

(q + 1)1−2d
n1/2

if 0 < d <
1
4 .

By using Equation (25), we deduce that L(n, d, q) → 0 as n → ∞, for all 0 < d < 1/2. The
convergences (27)–(31) can be proved by using Equation (26), similar arguments as above and
by noting that under H1 the following convergence holds

1
nd+1/2

[nt]
∑

k=1
yk =⇒ C(d, δ)Bd+1/2(t).




